
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Survivability issues in WDM optical networks
Chang Liu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Liu, Chang, "Survivability issues in WDM optical networks" (2007). Retrospective Theses and Dissertations. 15961.
https://lib.dr.iastate.edu/rtd/15961

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15961?utm_source=lib.dr.iastate.edu%2Frtd%2F15961&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Survivability issues in WDM optical networks

by

Chang Liu

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Lu Ruan, Major Professor

Johnny Wong
Wallapak Tavanapong

Ahmed E. Kamal
Maria Axenovich

Iowa State University

Ames, Iowa

2007

Copyright c© Chang Liu, 2007. All rights reserved.

www.manaraa.com

UMI Number: 3259485

3259485
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Survivable Mapping Problem in IP-over-WDM Networks 1

1.2 p-Cycle Protection in WDM Networks . 2

1.3 Dissertation Structure and Contribution . 2

CHAPTER 2. OVERVIEW OF SURVIVABLE MAPPING PROBLEM . . 4

2.1 Introduction . 4

2.2 Terminology and Notation . 6

CHAPTER 3. MAP-AND-FIX HEURISTIC 8

3.1 The MAP-and-FIX Algorithm . 8

3.1.1 Outline . 8

3.1.2 The Load-Based-Mapping Algorithm . 9

3.1.3 The FIX Algorithm . 9

3.1.4 Running Time Analysis . 12

3.2 Numerical Results . 13

3.2.1 Performance Comparison of MAP-and-FIX, ILP, and SM 14

3.2.2 Effectiveness of Different Procedures in MAP-and-FIX 15

3.3 Conclusion . 17

www.manaraa.com

iii

CHAPTER 4. LOGICAL TOPOLOGY AUGMENTATION 19

4.1 Theoretical Foundation . 20

4.1.1 When is any reflectively-routed mapping survivable? 20

4.2 Algorithms . 21

4.2.1 General framework . 21

4.2.2 An ILP formulation . 21

4.2.3 A Heuristic . 22

4.3 Numerical Results . 26

4.3.1 OPT vs. ESM HEURISTIC . 26

4.3.2 ESM ILP vs. ESM HEURISTIC . 27

4.4 Conclusion . 28

CHAPTER 5. NEW SURVIVABLE MAPPING PROBLEM 29

5.1 Introduction . 29

5.1.1 Background . 29

5.1.2 Problem Definition . 30

5.2 A Straightforward ILP Formulation . 31

5.3 A Theorem and Its Applications . 33

5.3.1 A Theorem . 33

5.3.2 An Improved ILP Formulation . 33

5.3.3 NP-hardness of NSM . 35

5.4 Numerical Results . 36

5.4.1 Simulation Settings . 36

5.4.2 Significance of the New Survivable Mapping Problem 37

5.4.3 Running Time Comparison Between ILP1 and ILP2 39

5.5 Conclusion . 39

CHAPTER 6. OVERVIEW OF P-CYCLE DESIGN 50

CHAPTER 7. FINDING GOOD CANDIDATE CYCLES 52

7.1 Optimal p-Cycle Protection Design and Heuristics 52

www.manaraa.com

iv

7.2 The Candidate Cycle Generation Algorithm . 54

7.2.1 Design Considerations . 54

7.2.2 Notations . 55

7.2.3 Step One: Generating High Efficiency Cycles 56

7.2.4 Step Two: Generating Short Cycles . 61

7.3 Numerical Results . 62

7.3.1 Spare Capacity Efficiency When k = 1 63

7.3.2 Effect of k on Spare Capacity Efficiency 64

7.3.3 Efficiency of Cycles Found in Step 1 (k = 1) 65

7.4 Conclusion . 65

CHAPTER 8. P-CYCLE DESIGN ON WDM NETWORK WITH SRLG’S 67

8.1 p-Cycle Protection upon an SRLG Failure . 68

8.2 An ILP for Optimal p-Cycle Design . 69

8.2.1 Problem Description . 69

8.2.2 ILP Formulation . 70

8.3 Generation of Candidate Cycles . 72

8.4 SRLG-Independent Restorability . 73

8.4.1 Impact of SRLG Failure Detection Problem on Restoration Speed . . . 73

8.4.2 A Solution with SRLG-Independent Restorability 74

8.4.3 Hardness of Generating Candidate Cycles with SRLG-Independent Restora-

bility . 76

8.5 Numerical Results . 77

8.5.1 Settings . 77

8.5.2 p-Cycle Design without Considering SRLG-Independent Restorability . 79

8.5.3 p-Cycle Design with SRLG-Independent Restorability 81

8.6 Conclusion . 82

CHAPTER 9. PATH-SEGMENT P-CYCLE DESIGN FOR DYNAMIC TRAF-

FIC . 87

www.manaraa.com

v

9.1 Flow p-Cycle Concept . 88

9.2 Dynamic Service Provisioning Using Flow p-Cycles 90

9.2.1 Demand Setup . 90

9.2.2 Demand Teardown . 94

9.3 Numerical Results . 95

9.3.1 Simulation Settings . 95

9.3.2 Flow p-Cycle vs. Span p-cycle . 96

9.3.3 On the Number of Candidate Working Paths k 96

9.3.4 All Cycles vs. Limited Cycles . 98

9.4 Conclusion . 99

CHAPTER 10. CONCLUSION AND FUTURE WORK 100

10.1 Conclusion . 100

10.2 Future Work . 101

BIBLIOGRAPHY . 102

www.manaraa.com

vi

LIST OF TABLES

3.1 Performance Comparison of MAP-and-FIX, ILP, and SM 14

3.2 Number of solutions obtained by different procedures in MAP-and-FIX 16

3.3 Performance of FIX . 16

3.4 Number of fixed/total non-survivable mappings for the four types. . . 17

4.1 Performance comparison of OPT and ESM HEURISTIC 27

4.2 Performance comparison of ESM ILP and ESM HEURISTIC 27

5.1 Improvement of ILP2 over ILP ORIG 38

7.1 Comparison of spare capacity efficiency for Network1 63

7.2 Comparison of spare capacity efficiency for Network2 64

8.1 Optimal p-cycle design results . 79

8.2 Spare capacity comparison between all cycles and basic cycles (the per-

centages over the optimum are shown in basic cycles entries) 80

8.3 Running time (second) comparison between all cycles and basic cycles 81

8.4 Optimal p-cycle design with and without SRLG-independent restorability 82

8.5 Non-SRLG-independently restorable cases 82

www.manaraa.com

vii

LIST OF FIGURES

2.1 A logical topology and a physical topology. 5

3.1 (a). NSFNET: a 14-node 21-link physical topology. (b). Random: a

10-node 15-link random physical topology. 14

4.1 An iteration of Augment1. Solid lines are current edges in G, and

dashed lines with weights are edges in Gh. 25

5.1 Minimal cost survivable mapping for the logical topology in Figure

2.1(a) before and after adding the logical link (a, e). Note that the

logical link (a, b) is mapped differently in the original logical topology

and the new logical topology. 30

5.2 Physical topologies used in the simulations. 37

5.3 Illustration for the Proof of Claim 3. Solid (thin and thick) lines

are logical links in lMafter(ij). Thick solid lines are logical links in

ECGafter(V (C1)). The dashed line is st ∈ E(Gbefore). The dotted

lines denote the logical path from s to i and the logical path from j to t

in Gafter. This diagram shows that if the removal of lMafter(ij) discon-

nects Gafter, then the removal of lMbefore(ij) = (lMafter(ij)−{ij})∪{st}

would also disconnect Gbefore. 48

6.1 A p-cycle example . 51

www.manaraa.com

viii

7.1 Illustration of the special handling of the degree 2 vertex. Numbers

above the dotted lines are weights. Here we let ǫ = 0.9 and ǫ′ = 0.05. (a)

Without special handling of 2-degree vertex. (b) With special handling

of 2-degree vertex. 60

7.2 Two test networks: (a) Network1; (b) Network2. 62

7.3 Effect of k on Spare Capacity Efficiency of ILP on CAND. 65

7.4 Effect of k on the Number of Candidate Cycles. 66

8.1 Relationship between an SRLG failure and a p-cycle (Solid lines are

links in the failed SRLG. Dashed-line ellipses represent p-cycles.) . . . 69

8.2 SRLG Failure Detection Problem . 74

8.3 SRLG Failure Detection Problem . 75

8.4 Test networks. 78

8.5 The network as well as the SRLG set derived from the formula (x1∨x2∨

x3) ∧ (x1 ∨ x2 ∨ x3). Thick solid lines denote an SRLG-independently

restorable cycle for link j corresponding to the assignment x1 = 0,

x2 = 1, x3 = 1. 85

9.1 A flow p-cycle example . 88

9.2 A demand is denoted as a 3-tuple (source, destination, capacity re-

quest). The thick solid line represents the working path for a demand

and the dashed line represents a p-cycle. (a) Total capacity required to

set up r1 is 10. (b) Total capacity required to set up r2 is 6 if we reuse

the existing p-cycles. 90

9.3 NSFNET . 96

9.4 Relationship between average total revenue and traffic load when k = 3. 97

9.5 Relationship between average total revenue and k value when load = 12. 97

9.6 Relationship between average demand setup time and k value when

load = 12. 98

www.manaraa.com

ix

ABSTRACT

WDM optical networks make it possible for the bandwidth of transport networks to reach

a level on which any failures would cause tremendous data loss and affect a lot of users. Thus,

survivability issues of WDM optical networks have attracted a lot of research work. Within the

scope of this dissertation, two categories of problems are studied, one is survivable mapping

from IP topology to WDM topology, the other is p-cycle protection schemes in WDM networks.

Survivable mapping problem can be described as routing IP links on the WDM topology

such that the IP topology stays connected under any single link failure in the WDM topology.

This problem has been proved to be NP-complete [1]. At first, this dissertation provides a

heuristic algorithm to compute approximated solutions for input IP/WDM topologies as an

approach to ease the hardness of it. Then, it examines the problem with a different view, to

augment the IP topology so that a survivable mapping can be easily computed. This new

perspective leads to an extended survivable mapping problem that is originally proposed and

analyzed in this dissertation. In addition, this dissertation also presents some interesting open

problems for the survivable mapping problem as future work.

Various protection schemes in WDM networks have been explored. This dissertation focuses

on methods based on the p-cycle technology. p-Cycle protection inherits the merit of fast

restoration from the link-based protection technology while yielding higher efficiency on spare

capacity usage [2]. In this dissertation, we first propose an efficient heuristic algorithm that

generates a small subset of candidate cycles that guarantee 100% restorability and help to

achieve an efficient design. Then, we adapt p-cycle design to accommodate the protection of

the failure of a shared risk link group (SRLG). At last, we discuss the problem of establishing

survivable connections for dynamic traffic demands using flow p-cycle.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Wavelength-division multiplexing (WDM) is a technology that multiplexes multiple optical

carrier signals on a single optical fibre by using different wavelengths (colours) of laser light

to carry different signals. With the tremendous bandwidth that is enabled by this technology,

WDM optical networks are becoming the backbone transport networks for the next genera-

tion Internet. Because of the nature of large bandwidth traffic transported by WDM optical

networks, any failures such as a fibre cut would cause enormous data loss. Therefore, it is

important to design WDM networks that are able to survive failures. Extensive research work

has been engaged in this area. This dissertation will focus on two survivability issues in WDM

networks which are survivable mapping problem and p-cycle protection.

1.1 Survivable Mapping Problem in IP-over-WDM Networks

The Internet Protocol (IP) is the foundation of packet switched internetwork. There is a

growing consensus that the next generation Internet will employ an IP-over-WDM architecture

[3], where IP routers are attached to a WDM optical network consisting of optical cross-

connects (OXCs) interconnected by multi-wavelength optical fibers.

A network is survivable if it can automatically reroute the traffic around failure. Surviv-

ability can be achieved by either protection or restoration. In protection, one or more backup

paths are computed and corresponding spare capacities are reserved in advance for every pri-

mary path (i.e., the path that carries traffic in absence of a failure). In restoration, one or

more backup paths with sufficient spare capacities are searched after the primary path fails.

Protection has fast recovery time and guarantees the success of recovery while restoration is

more efficient in capacity utilization. Lightpath protection schemes [4][5][6][7][8][9] and light-

www.manaraa.com

2

path restoration schemes [10][11][12] have been studied extensively for WDM optical networks.

Although WDM layer survivability mechanisms can achieve fast and efficient recovery of light-

paths, they can not provide differentiated resilience to individual IP flows since WDM layer

operates on lightpath granularity with each lightpath carrying aggregated IP traffic flows. In

addition, IP router failures cannot be handled by the WDM layer. Thus, IP layer recovery

is needed. Multi-Protocol Label Switching (MPLS) [13] is a promising technology to provide

both QoS and resilience in IP networks [14]. Several MPLS-based protection and restoration

schemes have been studied recently [15][16][17][18][19]. IP layer failure recovery is possible

only if a failure does not disconnect the IP topology. This leads to the following survivable

mapping problem: given a IP topology and a WDM topology, map the IP topology onto the

WDM topology such that the IP topology remains connected in case of any single WDM link

failure. This dissertation explores this problem from different perspectives and extends it to a

new problem with interesting graph theoretical properties.

1.2 p-Cycle Protection in WDM Networks

As discussed in the previous section, WDM layer survivability is necessary in order to min-

imize the interruption duration resulted from failures happened in the WDM optical networks.

As a promising protection scheme, p-cycle technology was proposed in [2]. It achieves both

fast restoration and spare capacity efficiency, which is an intriguing feature that makes it an

appealing research area in recent years. This dissertation addresses one of its fundamental

problems and presents new p-cycle protection schemes.

1.3 Dissertation Structure and Contribution

For the survivable mapping problem in IP-over-WDM networks, Chapter 2 provides a

general overview of the problem and introduces notations that will be used later in Chapter

3 through Chapter 5. In Chapter 3, a heuristic algorithm solving the survivable mapping

problem is presented while Chapter 4 investigates a different approach to this problem by

augmenting the logical topology. As a follow-up of this idea, Chapter 5 analyzes a new version

www.manaraa.com

3

of survivable mapping problem that allows adding new logical links.

For the p-cycle protection schemes on WDM networks, Chapter 6 introduces the concept

of p-cycle protection and terminologies that will be used in future chapters. Chapter 7 gives a

heuristic algorithm that efficiently generates candidate cycles for p-cycle design. Chapter 8 ex-

tends the original p-cycle design against single-link-failure assumption to supporting shared risk

link group (SRLG) failure model which is more general and realistic in real world. Moreover,

Chapter 9 proposes a strategy that deploys path-segment p-cycles for protection of dynamic

traffic demands.

Finally, Chapter 10 concludes the dissertation with a summary and future work consider-

ation.

www.manaraa.com

4

CHAPTER 2. OVERVIEW OF SURVIVABLE MAPPING PROBLEM

2.1 Introduction

In IP-over-WDM architecture, IP routers are attached to the optical cross-connects (OXCs)

in a WDM optical network and IP links are realized by lightpaths in the optical network. We

refer to IP network topology, IP routers, and IP links as logical topology, logical nodes, and

logical links, respectively. We refer to optical network topology, OXCs, and optical fibers as

physical topology, physical nodes, and physical links, respectively. A logical topology is mapped

on a physical topology by mapping each logical link to a path in the physical topology. (This

reflects the fact that each IP link is realized by a lightpath in the optical network.) There are

different ways to map a logical topology on a physical topology. For example, consider the

logical and physical topologies shown in Figure 2.1. One mapping could map the logical link

(a, c) to the physical path < A − B − C >, while another mapping could map (a, c) to the

physical path < A − E − C >.

Consider the logical topology and the physical topology given in Figure 2.1. One possible

mapping is to map (a, b) to < A − B >, (a, c) to < A − B − C >, (b, d) to < B − D >, (b, e)

to < B − A − E >, (c, e) to < C − E >, and (d, e) to < D − E >. Notice that the failure

of physical link (A, B) will cause logical links (a, b), (a, c), and (b, e) to fail simultaneously,

leaving the logical topology disconnected. A possible solution to this problem is to map (a, b)

to A−E −D −B instead. Therefore, it is desirable to solve the following survivable mapping

problem: given a logical topology and a physical topology, map the logical topology onto the

physical topology such that the logical topology remains connected in case of any single physical

link failure.

The survivable mapping problem has been studied in [1][20][21][22][23][24][25][26]. In [1],

www.manaraa.com

5

a

b

c
d

e

(a). Logical Topology

(b). Physical Topology

A

B

C
D

E

Figure 2.1 A logical topology and a physical topology.

it is proved that determining whether a survivable mapping exists for a logical topology on a

physical topology is NP-Complete. [20] gives a necessary and sufficient condition for a mapping

to be survivable. Based on the condition, an integer linear program (ILP) formulation is

given to solve the survivable mapping problem with the objective of minimizing the cost of

the mapping. In [21], a mixed integer linear program (MILP) formulation for the survivable

mapping problem is given. The MILP has faster computation speed than the ILP given in

[20] since the number of constraints in the MILP grows as a polynomial with the size of the

network while the number of constraints in the ILP grows exponentially with the size of the

network. Various heuristic algorithms for the survivable mapping problem are proposed in

www.manaraa.com

6

[22][23][24][25]. In [26], a formal analysis of a previously proposed heuristic algorithm named

SMART [25] is given and the analysis shows that SMART can be used to derive practical

methods for determining the existence or absence of a survivable mapping for large networks.

2.2 Terminology and Notation

Because fiber cut is the predominant form of failures in optical networks [27], we only

consider single physical link failure here. Moreover, we also assume that sufficient capacity

(wavelengths) is available on each physical link so that capacity constraints will not be consid-

ered.

Logical and physical topologies are represented by undirected graphs Gl = (Vl, El) and

Gp = (Vp, Ep), respectively. Generally, Vl ⊆ Vp; however, we make the simplifying assumption

that Vl = Vp = V in this dissertation. Although logical and physical topologies are represented

by undirected graphs, sometimes it is useful to treat an undirected edge ij ∈ Ep as two

directed edges (ij and ji) in opposite directions. We denote the set of directed edges obtained

by replacing each undirected edge in Ep by two directed edges of opposite directions as Ed
p ,

where ’d’ stands for ’directed’.

For a graph G = (V, E) and S ⊂ V (S 6= ∅), the edge cut of G defined by S, denoted by

ECG(S), is the set of edges in G with one end node in S and the other end node in V − S.

Clearly, removing the edges in ECG(S) from G will disconnect G.

For s, t ∈ V (s 6= t), a path from s to t in Gp is denoted as pst = (s − · · · − t). Pst

denotes the set of all paths from s to t in Gp. A mapping from Gl to Gp is a function

M : El −→
⋃

s,t∈V (s 6=t) Pst. That is, M maps each edge st ∈ El to a path from s to t in Gp.

The cost of mapping M , denoted by cost(M), is the total wavelength channels used to map

all the logical links in Gl. It can be computed as cost(M) =
∑

st∈El
|M(st)|, where |M(st)| is

the hop count of M(st).

st ∈ El is a reflective logical link if there is a physical link between s and t in Gp. In other

words, st is a reflective logical link if st ∈ El∩Ep. A reflective logical link st is reflectively-routed

under mapping M if M(st) = (s − t), i.e., M maps st to the single-hop path between s and t

www.manaraa.com

7

in Gp. M is a reflectively-routed mapping if all reflective logical links are reflectively-routed.

The load set of a physical link ij ∈ Ep under mapping M , denoted as LM (ij), is the set of

all logical links whose physical path traverses ij, i.e., LM (ij) = {st ∈ El|M(st) traverses ij}.

The remaining logical topology upon the failure of ij ∈ Ep under M , denoted as GM
l (ij), is the

new logical topology obtained by removing all logical links in Gl whose physical path traverses

ij. Thus, GM
l (ij) = (V, El − LM (ij)). A physical link ij ∈ Ep is called a critical link under

M if GM
l (ij) is not connected. If this is the case, a logical link st ∈ LM (ij) is labeled as a

bridge link of ij under M if s and t belong to two difference connected components of GM
l (ij).

Moreover, the set of all bridge links of ij under M are denoted as BM (ij).

M is a survivable mapping from Gl to Gp if GM
l (ij) is connected for all ij ∈ Ep. In other

words, M is a survivable mapping if there is no critical link in Gp under M .

Gl is a survivable logical topology on Gp if there exists a survivable mapping from Gl to

Gp. The cost of a survivable logical topology Gl, denoted by cost(Gl), is the minimal cost of

all survivable mappings from Gl to Gp. A survivable mapping M from Gl to Gp is called a

minimal cost survivable mapping if cost(M) = cost(Gl).

We say G1 = (V1, E1) contains G2 = (V2, E2) if V1 = V2 and E2 ⊆ E1. Given a logical

topology Gl and a physical topology Gp, a minimal cost survivable logical topology that contains

Gl on Gp is a survivable logical topology G′
l on Gp such that G′

l contains Gl and cost(G′
l) is

minimized. We denote the minimized cost as MIN-COSTGl
, then cost(G′

l) = MIN-COSTGl
=

min cost(G), where the min is taken over all G such that G contains Gl and G is a survivable

logical topology on Gp.

www.manaraa.com

8

CHAPTER 3. MAP-AND-FIX HEURISTIC

MAP-and-FIX is a polynomial time heuristic algorithm for the survivable mapping problem.

The idea is based on the observation that although it is hard to obtain a survivable mapping

in a single attempt, it is possible to obtain a mapping that is close to survivable by carefully

selecting the routing of the logical links. By close, we mean that the non-survivable mapping

can be turned into a survivable one by rerouting only a small number of logical links. This

algorithm first computes a mapping that is likely to be survivable or close to survivable; if the

mapping is not survivable, then we identify a set of troublesome logical links and reroute them

to transform the mapping into a survivable one.

This chapter is organized as follows. In section 3.1, we present the Map-and-Fix algorithm.

In section 3.2, numerical results on the performance of the proposed algorithm are provided.

Finally, section 3.3 gives a conclusion.

3.1 The MAP-and-FIX Algorithm

3.1.1 Outline

First, we compute a mapping using the Simple-Mapping (SM) algorithm, which maps each

logical link to the shortest path in Gp. Next, we check whether the mapping is survivable. If

yes, the mapping is returned. Note that this mapping is optimal since it minimizes the total

cost of the logical links. If the mapping obtained by SM is not survivable, we compute a new

mapping using the Load-Based-Mapping (LBM) algorithm. The new mapping is then checked

for survivability. If it is survivable, then it is returned. Otherwise, we use the FIX algorithm

to try to convert the mapping to a survivable one by rerouting some logical links. We will

present the LBM algorithm and the FIX algorithm in the following two sections. The steps of

www.manaraa.com

9

MAP-and-FIX is given bellow.

MAP-and-FIX(Gl, Gp)

1. Compute a mapping M1 using SM;

2. if M1 is survivable then

3. return M1;

4. else

5. Compute a mapping M2 using LBM;

6. if M2 is survivable then

7. return M2;

8. else

9. Modify M2 using FIX;

3.1.2 The Load-Based-Mapping Algorithm

The key idea in LBM is to avoid using physical links with high load when routing a logical

link because the higher is the load on a physical link, the more likely the link is critical. This is

achieved by assigning each physical link a cost based on its current load. Specifically, the cost

function of a physical link x is l(x) + 1 where l(x) is the number of logical links that traverse

x up to this point and the “+1” term ensures that a physical link not used by any logical

link will receive a cost of 1. The LBM algorithm routes the logical links sequentially and use

Dijkstra’s algorithm to compute the least-cost path for each logical link. The load-based cost

function is also used by the FIX algorithm to compute the routes for the logical links chosen

to be rerouted.

3.1.3 The FIX Algorithm

The input of FIX is a non-survivable mapping M that maps Gl onto Gp. The goal of

the algorithm is to “fix” M (i.e., transform M to a survivable mapping) by rerouting some

logical links. The fix is done in iterations. In each iteration, we reroute a certain number of

bridge links for each critical link in Gp as follows. For each critical link x, we compute the

www.manaraa.com

10

the number of components in GM
l (x). If GM

l (x) has m components (m > 1 since x is critical),

we pick m − 1 bridge links of x to reroute. The goal is to ensure that after a bridge link is

rerouted, the number of components in GM
l (x) is reduced by one. We maintain a set called

reroute candidates(x) from which we pick m − 1 bridge links to reroute. Initially, this set is

set to BM (x) i.e., it contains all the bridge links of x. We then randomly pick a link l from

reroute candidates(x) and reroute it so that it does not use x. This will reduce the number

of components in GM
l (x) by 1. Before we pick the next bridge link to reroute, we update

reroute candidates(x) by removing l and the siblings of l from it. Suppose the two endpoints

of l are in components C1 and C2 in GM
l (x) before l is rerouted, then the siblings of l, denoted

by siblings(l), is the set of links in reroute candidates(x) that also have their endpoints in C1

and C2. The reason we remove siblings(l) from reroute candidates(x) after l is rerouted is

that once l is rerouted, the failure of x will not disconnect C1 and C2 and therefore rerouting

any link in siblings(l) will not decrease the number of components in GM
l (x). The update

of reroute candidates(x) guarantees that when we pick a link in reroute candidates(x) to

reroute, the number of components in Gl −LM (x) will be reduced by 1. After m− 1 links are

rerouted, GM
l (x) will have only one component and thus x is no longer critical.

Note that the fix of one critical link may create new critical link(s). Therefore, after we

have fixed all the critical links by rerouting some of their bridge links, we check whether the

new mapping is survivable. If so, the mapping is returned. Otherwise, we discard the mapping

and carry out another iteration to fix M (i.e., pick another set of bridge links for each critical

link to reroute). The process is repeated until a survivable mapping is found or the maximum

number of iterations is reached. The maximum number of iterations is set to K ∗ c where K is

a constant and c is the number of critical links in M . The random selection of to-be-rerouted

bridge links coupled with multiple iterations can increase the probability of finding a survivable

mapping.

Special handling is needed when we reroute a bridge link e to fix critical link x because

e may belong to the bridge-set of some other critical links. Let critical(e) denote the set of

critical links that contain e in their bridge-sets. Let num reroute(x) be the total number of

www.manaraa.com

11

bridge links of x that needs to be rerouted to fix x (num reroute(x) equals the number of

components in GM
l (x) minus 1). Let to reroute(x) denote the number of bridge links of x yet

to be rerouted to fix x. to reroute(x) is initialized to num reroute(x) and is decreased by

one whenever a bridge link of x is rerouted. x is said done when to reroute(x) reaches 0. Let

done critical links be a set containing all the done critical links. Suppose we are currently

processing critical link x and have chosen bridge link e of x to reroute. When we compute a

new route for e, we do not allow it to use any link in critical(e) − done critical links. Thus,

the rerouting of e not only contributes to the fix of x, but also contributes to the fix of all other

critical links in critical(e)−done critical links. Therefore, to reroute(y) should decrease by 1

for all y ∈ critical(e)−done critical links after e is rerouted. In addition, for every critical link

y ∈ critical(e)− done critical links, reroute candidates(y) should be updated by removing e

and siblings(e) from it.

The pseudo-code of the FIX algorithm is given bellow.

FIX(Gl, Gp, M)

M : inout parameter

Gl, Gp: in parameter

1. let c = the number of critical links in Gp;

2. let max iteration = K ∗ c;

3. let num iteration = 0;

4. let S = set of all critical links in Gp;

5. for each x ∈ S do

6. let m = number of components in GM
l (x);

7. let num reroute(x) = m − 1;

8. let done critical links = ∅;

9. for each x ∈ S do

10. let to reroute(x) = num reroute(x);

11. let reroute candidates(x) = BM (x);

12. while S − done critical links 6= ∅ do

www.manaraa.com

12

13. Randomly pick a link x from S − done critical links;

14. while to reroute(x) 6= 0 do

15. Randomly pick a link e from reroute candidates(x);

16. Reroute e so that it does NOT use any link in critical(e) − done critical links;

17. for each b ∈ critical(e) − done critical links do

18. let to reroute(b) = to reroute(b) − 1;

19. Remove e and siblings(e) from reroute candidates(b);

20. if to reroute(b) = 0 then

21. Add b to done critical links;

22. let num iteration = num iteration + 1;

23. if the new mapping is survivable then

24. return M = the new mapping;

25. if num iteration < max iteration then

26. goto 8

27. else Print “Survivable mapping not found.”;

Line 1–7 initialize some variables. Line 8–22 is the iteration that computes a new mapping

by fixing M . Following the initializations in line 8–11 is a while loop (line 12–21) that fixes M

by rerouting a certain number of bridge links for each critical link. The rerouting reduces the

number of components in GM
l (x) to 1 for every critical link x. Line 22 increases the iteration

counter. Line 23–24 return the new mapping if it is survivable. Line 25–27 determine whether

another iteration is needed.

3.1.4 Running Time Analysis

Let Gp = (V, Ep) and Gl = (V, El) represent the physical topology and the logical topology

respectively. The running time of MAP-and-FIX is the sum of the running times of SM, LBM,

survivability check, and FIX.

SM has complexity O(|El||V |2) since it takes O(|V |2) to find the shortest path in Gp for

each logical link.

www.manaraa.com

13

In LBM, the cost of every physical link must be computed first when routing a logical link.

Thus, the time to route a logical link is O(|Ep|+ |V |2), which is O(|V |2) since |Ep| = O(|V |2).

There are |El| logical links to route, so LBM has complexity O(|El||V |2).

To determine if a mapping is survivable, we check whether GM
l (x) is connected using

breadth first search for each physical link x. Since breadth first search takes O(|V |+ |El|), the

total time for survivability check is O(|Ep|(|V | + |El|)).

The running time of FIX is determined by the time taken in one iteration and the number

of iterations performed. The running time for one iteration is dominated by the rerouting time

for fixing all critical links. At most O(|El|) links will be rerouted, so the running time of one

iteration is O(|El||V |2). There are at most K ∗ |L| iterations, where K is a constant and L is

the set of all critical links in the input mapping. So the running time of FIX is O(|L||El||V |2),

which is O(|Ep||El||V |2) since |L| is O(|Ep|).

Summing up the running times of SM, LBM, survivability check, and FIX gives the running

time of MAP-and-FIX, which is O(|Ep||El||V |2).

3.2 Numerical Results

To evaluate the performance of MAP-and-FIX, we conduct simulations on various logical

and physical topologies. Two physical topologies are used. One is the 14-node 21-link NSFNET

shown in Figure 3.1 (a), the other is a randomly generated 10-node 15-link topology shown in

Figure 3.1 (b). Both physical topologies have average node degree 3. For the NSFNET physical

topology, two groups of 14-node 21-link logical topologies are mapped onto it. The first group

consists of 100 3-regular (every node has degree 3) topologies. The second group consists of

100 arbitrary topologies. For the 10-node 15-link random physical topology, a group of 100

10-node 17-edge arbitrary logical topologies are mapped onto it. All logical topologies are

randomly generated and 2-connected. All simulations are run on a Sun Ultra 10 workstation

with a 440MHz CPU, 256MB RAM, 4GB virtual memory. CPLEX8.1 is used as the ILP

solver.

www.manaraa.com

14

11 1

2

3

4
5

6

7

8

10 14

12

13

9

1

6

3 9

2

5

4

10

8

7

(a). NSFNET (b). Random

Figure 3.1 (a). NSFNET: a 14-node 21-link physical topology. (b). Ran-
dom: a 10-node 15-link random physical topology.

3.2.1 Performance Comparison of MAP-and-FIX, ILP, and SM

For each group of 100 logical topologies and the corresponding physical topology, ILP [20],

SM, and MAP-and-FIX are used to solve the survivable mapping problem. The number of

solutions found, the average cost of the solutions, and the average runtime are shown in Table

3.1. Here the cost of a solution is the sum over all logical links’ costs (recall that the cost of a

logical link is the hop count of its physical path). In the FIX procedure, the maximum number

of iterations is set to 10 times the number of critical links, i.e., K = 10.

Table 3.1 Performance Comparison of MAP-and-FIX, ILP, and SM
Topologies Algorithm # of Ave cost Ave runtime

(Logical over Physical) solutions (sec)
14-node 3-regular ILP 100 45.91 677.352

over SM 17 43.00 0.068
NSFNET MAP-and-FIX 100 47.98 0.137

14-node 21-link ILP 99 46.71 692.499
over SM 6 42.5 0.068

NSFNET MAP-and-FIX 86 48.53 0.169

10-node 17-link ILP 100 31.78 1.906
over SM 28 30.79 0.041

Random MAP-and-FIX 99 32.78 0.074

As shown in Table 3.1, MAP-and-FIX outperforms SM considerably in terms of the number

of solutions found. This demonstrates the effectiveness of LBM and FIX used in MAP-and-FIX.

In addition, the success ratio of MAP-and-FIX (i.e., the ratio of the number of solutions found

by MAP-and-FIX to the number of solutions found by ILP) is very high. For 14-node 21-link

arbitrary logical topologies, MAP-and-FIX has a success ratio of 86.9% (86/99), which is not

as good as the success ratio for 14-node 3-regular logical topologies (100%) even though both

www.manaraa.com

15

groups of logical topologies have the same number of nodes and links. This can be explained

by the fact that almost all r-regular graphs are r-connected [28]. Since almost all 3-regular

topologies are 3-connected and 3-connected topologies have better connectivity than arbitrary

2-connected topologies, it is easier to find survivable mappings for 3-regular topologies than

for arbitrary 2-connected topologies. The success ratio of the 10-node 17-link arbitrary logical

topologies is 99%, which is about 12% higher than that of the 14-node 21-link arbitrary logical

topologies. The reason is that 10-node 17-link logical topologies (average node degree 3.4) are

denser than 14-node 21-link logical topologies (average node degree 3.0), and the denser is a

logical topology, the easier can a survivable mapping be found.

To evaluate the capability of MAP-and-FIX to find optimal solutions, we compare the

average cost of solutions found by MAP-and-FIX and by ILP for those logical topologies that

MAP-and-FIX can find a solution. For 14-node 3-regular logical topologies, MAP-and-FIX

found solutions for all 100 logical topologies with an average cost 2.07 (or 4.5%) higher than

ILP solutions. Moreover, 31 solutions obtained by MAP-and-FIX are optimal. For 14-node

21-link arbitrary logical topologies, the average extra-cost over ILP solutions is 2.30 (or 5.0%)

for the 86 solutions, out of which 16 are optimal. For 10-node 17-link logical topologies, the

average extra-cost is 1.04 (or 3.3%), and 42 out of 99 solutions found by MAP-and-FIX are

optimal. These results show that the solutions found by MAP-and-FIX are very close to

optimal.

As of runtime, we can see that MAP-and-FIX runs much faster than ILP. The speed-up

is 677.352/0.137 ≈ 4944 for the 14-node 3-regular logical topologies, 692.499/0.169 ≈ 4098 for

the 14-node 21-link logical topologies, and 1.906/0.074 ≈ 26 for the 10-node 17-link logical

topologies.

3.2.2 Effectiveness of Different Procedures in MAP-and-FIX

Three procedures–SM, LBM, and FIX–are used in MAP-and-FIX. To find out the effec-

tiveness of these procedures, the number of solutions found by each of them are shown in Table

3.2. For example, among the 86 solutions for the 14-node 21-link arbitrary logical topologies, 6

www.manaraa.com

16

are obtained by SM, 10 more are obtained by applying LBM, and 70 are obtained by FIX after

SM and LBM fail to find a survivable mapping. The combination of these three procedures

leads to good overall performance.

Table 3.2 Number of solutions obtained by different procedures in
MAP-and-FIX

Topologies By SP By LBM By FIX
Logical Physical
14-node NSFNET 17 23 60
3-regular

14-node 21-link NSFNET 6 10 70
arbitrary

10-node 17-link Random 28 27 44
arbitrary

To study the runtime of FIX, the number of iterations and the number of reroutings per

iteration are recorded for each logical topology whose solution is obtained by FIX. The average

number of iterations and the average reroutings per iteration for the three simulation scenarios

are shown in Table 3.3. The averages are taken over all solutions that are obtained by FIX,

i.e., solutions obtained by SM and LBM are not counted. Table 3.3 shows that no more than

2 iterations on average are needed to fix a non-survivable mapping. And on average, no more

than 3 reroutings are needed in one iteration. These results demonstrate that the mappings

obtained by LBM are indeed close to survivable since only a small number of logical links needs

to be rerouted to fix the mapping.

Table 3.3 Performance of FIX
Topologies Average number Average rerouting

Logical Physical of iterations per iteration
14-node 3-regular NSFNET 1.12 1.48
14-node 21-link NSFNET 1.66 2.20
10-node 17-link Random 1.23 1.20

To see how close are the non-survivable mappings obtained by LBM to survivable, we

classify them into four types. A mapping is type A if it has only one critical link and the

failure of the critical link will partition the logical topology into exactly two components. A

mapping is type B if it has more than one critical links and the failure of each critical link

will partition the logical topology into exactly two components. A mapping is type C if it has

only one critical link and the failure of the critical link will partition the logical topology into

more than two components. A mapping is type D if it has more than one critical links and

www.manaraa.com

17

the failure of at least one of the critical links will partition the logical topology into more than

two components. Intuitively, the more logical links are rerouted to fix a critical link, the more

likely that a new critical link will be created, which makes the new mapping non-survivable.

Thus, type A and B are easy to fix because only one logical link needs to be rerouted to fix a

critical link and type C and D are hard to fix because at least one logical link needs to be fixed

by rerouting more than one logical link. Table 3.4 shows how many non-survivable mappings

belong to each of the four types and how many of them can be fixed by FIX. A table entry a/b

in the column labeled by X means that there are a total of b type X non-survivable mappings,

out of which a can be converted to a survivable mapping by FIX. Note that the sum of the

a values in a row equals the total number of mappings fixed by FIX for the corresponding

logical and physical topologies. The table shows that for all three groups of logical/physical

topologies, most of the non-survivable mappings are of type A and B and most of the type

A and B mappings can be fixed by FIX. This confirmed that most non-survivable mappings

obtained by LBM are easy to fix and FIX is very effective in fixing type A and type B mappings.

Table 3.4 Number of fixed/total non-survivable mappings for the four
types.

Topologies A B C D
Logical Physical
14-node NSFNET 35/35 23/23 1/1 1/1
3-regular

14-node 21-link NSFNET 20/21 45/51 0/0 5/12
arbitrary

10-node 17-link Random 32/33 11/11 1/1 0/0
arbitrary

3.3 Conclusion

This chapter provides an effective polynomial time heuristic algorithm, MAP-and-FIX,

for the survivable mapping problem. The algorithm first uses the Simple-Mapping algorithm

and the Load-Based-Mapping algorithm to find a mapping for the given logical topology and

physical topology. If both fail to produce a survivable mapping, the FIX algorithm is used to

reroute a set of logical links for each critical link in the non-survivable mapping. The fix is

done in iterations until a survivable mapping is found or the maximum number of iterations is

www.manaraa.com

18

reached. Simulation results show that MAP-and-FIX runs much faster than the ILP [20] and

can find a survivable mapping with high probability if such a mapping exists. The effectiveness

of MAP-and-FIX lies in the fact that most of the non-survivable mappings obtained by LBM

are close to survivable so that only a small number reroutings are needed to fix the mapping.

In addition, the solutions obtained by MAP-and-FIX are very close to optimal in terms of the

solution cost.

www.manaraa.com

19

CHAPTER 4. LOGICAL TOPOLOGY AUGMENTATION

In this chapter, a new approach to tackle the inherent hardness of the survivable mapping

problem is introduced. Instead of trying to find a survivable mapping for the given logical

topology on the physical topology, we augment the logical topology to an extent such that a

survivable mapping can be polynomial-time computed. In other words, we make the survivable

mapping problem polynomial-time solvable by selectively introducing new logical links. As the

theoretical foundation, we will prove that as long as the intersection of the logical and the

physical topologies is 2-edge-connected, any shortest path mapping from the logical topology

to the physical topology is survivable. Then a natural optimization is to minimize the number

of edges added to make the intersection of the logical and physical topologies 2-edge-connected.

This graph augmentation problem is NP-hard [29]. We provide an integer linear programming

(ILP) formulation to find its optimal solution. Moreover, to make the scheme a complete

polynomial-time solution, we offer a heuristic for the augmentation problem as well.

This chapter is organized as follows. In section 4.1, we give a theorem about the condition

when any reflectively-routed mapping is survivable. In section 4.2, we first present the general

framework of our scheme, and then describe an ILP formulation that solves the graph aug-

mentation problem optimally. As an alternative, we also give a heuristic to the augmentation

problem. Simulations for our scheme as well as the performance comparison between the ILP

and the heuristic are discussed in section 4.3. Finally, a conclusion is given in section 4.4.

www.manaraa.com

20

4.1 Theoretical Foundation

4.1.1 When is any reflectively-routed mapping survivable?

Our goal is to augment the logical topology such that a survivable mapping could be

found easily. A natural direction is to consider shortest-path mappings. So, it would be

helpful to know under what condition is any shortest-path mapping survivable. The reason

why we emphasize any shortest-path mapping be survivable, instead of just some of them

is that for each logical link, there might be multiple shortest paths in the physical topology.

Combinatorially, this could blow up the number of different shortest-path mappings. If not

all of them are survivable, the situation will be complex when we are trying to pick survivable

ones out of them, which compromises the simplicity of the potential shortest-path mapping

algorithms.

By definition, shortest-path mappings are reflectively-routed. So any reflectively-routed

mapping being survivable implies any shortest-path mapping being survivable. In the following

theorem, we give a condition under which any reflectively-routed mapping is survivable given

Gl and Gp.

Theorem 4.1 Given Gl = (V, El) and Gp = (V, Ep), let G = (V, El ∩ Ep). If G is 2-edge-

connected, then any reflectively-routed mapping from Gl to Gp is survivable.

Proof: For any reflectively-routed mapping M from Gl to Gp, by definition, ∀st ∈ El ∩ Ep,

M(st) = (s− t). Under this mapping, in case of any single physical link ij ∈ Ep failure, among

logical links in El, at least those in E(G) − {ij} will stay in the remaining logical topology

because none of their physical paths traverses ij. And since G is 2-edge-connected, logical

links in E(G)−{ij} compose a connected graph. In other words, any single link failure in the

physical topology does NOT disconnect Gl under mapping M . Therefore M is a survivable

mapping from Gl to Gp.

www.manaraa.com

21

4.2 Algorithms

4.2.1 General framework

The procedure of the proposed scheme is described by the following pseudo-code.

Easy Survivable Mapping(Gl, Gp, M)

Gl, M : inout

Gp: in

1. let G = (V, El ∩ Ep);

2. let Gh = (V, Ep − E(G));

3. let E =Augment(G, Gh);

4. let Gl = (V, El ∪ E);

5. Compute a shortest-path mapping M from Gl to Gp;

In this procedure, we first compute the intersection (G) of the logical and physical topolo-

gies. Then the edges that can be used for augmenting the logical topology together with all

vertices form Gh. In line 3, the function Augment returns the edges in Gh needed to add

into G to make G 2-edge-connected. If G is already 2-edge-connected, function Augment just

returns an empty set. By Theorem 4.1, we know that the mapping M computed in line 5

is survivable. Unfortunately, the problem of augmenting a graph to 2-edge-connected using

a given set of edges while minimizing the number of edges added is NP-hard [29]. We will

provide an ILP formulation solving the problem optimally and give a heuristic algorithm for

function Augment.

4.2.2 An ILP formulation

The ILP formulation has the following variables:

• xst: takes value 1 if st is included in the result logical topology, 0 otherwise, ∀st ∈ Ep.

Minimize
∑

st∈Ep

xst

www.manaraa.com

22

Subject to:

(a). 2-edge-connectivity constraints:

∑

(s∈S∧t∈V −S)
∨

(s∈V −S∧t∈S)

xst ≥ 2, ∀S ⊂ V.

(b). Deletion of existing logical links is not allowed:

xst = 1, ∀st ∈ El ∩ Ep.

(c). Integer constraints:

xst ∈ {0, 1}, ∀st ∈ Ep − El.

The 2-edge-connectivity constraints in (a) guarantee that the number of links in each edge

cut is at least 2, i.e., the solution constitutes a 2-edge-connected spanning subgraph of Gp. The

constraints in (b) make sure that existing logical links in the intersection topology are kept.

The objective function minimizes the number of edges in the result logical topology, hence the

number of edges added to the logical topology is minimized.

4.2.3 A Heuristic

The heuristic algorithm for function Augment is described as follows. First, we find

all 2-edge-connected components in G. Since no edge inside a 2-edge-connected component

needs to be considered, a 2-edge-connected component will be treated as a single vertex for

augmentation. So, contraction according to 2-edge-connected components in G (i,e, contracting

the vertex set in each 2-edge-connected component in G) are done on G and correspondingly

on Gh. (To contract a vertex set X ⊆ V (G) means that all vertices in X are replaced by a

new vertex x. Edges with both endpoints in X are gone. Edges incident to one vertex in X

becomes edges incident to x. Note that contraction can result in parallel edges. The default

setting is to drop parallel edges after contraction.) After the contraction, G becomes a forest

with one or more trees. The augmentation of G consists of 2 steps: first, “Augment1” adds

edges to G to make it a spanning tree using edges in Gh; then, “Augment2” continues to add

edges to G until it becomes 2-edge-connected. Finally, the edge set that contains the added

www.manaraa.com

23

edges during the two steps is returned. The pseudo-code of the heuristic algorithm is given

below.

Augment Heuristic(G, Gh)

G, Gh: in

1. let C = all 2-edge-connected components in G;

2. Contract components in C on G and Gh
∗;

3. let E1 = Augment1(G, Gh);

4. let E2 = Augment2(G, Gh);

5. return E1 ∪ E2;

*: For the contraction on Gh, keep resulted parallel edges.

Augment1 adds edges into G one by one, each new edge decreases the number of trees

in G by one. So it always returns an edge set with size |V (G)| − |E(G)| − 1. However, the

shape of the resulted tree has strong impact for the next step Augment2 and a tree with less

leaves (the degree one vertices) is more desirable for Augment2 in which leaves cost edges to

be added. (In Augment2, we will add leaf-incident edges to eliminate leaves.) To minimize

the number of resulted leaves after adding an edge to G, we want to maximize the length of

the longest path in the resulted tree. Thus, in Augment1, we add edges one by one, each

time making a greedy choice. That is, we always add an edge such that the length of the

longest path of the resulted tree is maximized. To facilitate this goal, we define a weight for

each candidate edge in E(Gh) to be the length of the longest path in the tree resulted from

adding this edge. For uv ∈ E(Gh) where u, v are in different trees in G, the weight of uv

turns out to be height(Tu) + height(Tv) + 1 where Tu/Tv is the tree that is rooted at u/v, and

height(Tu)/height(Tv) is the length of the longest path from the root u/v to a leaf in Tu/Tv.

An iteration of Augment1 is illustrated in Figure 4.1. Note that after adding x − y to G, the

weights of the edges in Gh are updated.

Augment1(G, Gh)

G, Gh: inout

www.manaraa.com

24

1. let A = ∅;

2. while G is not connected do

3. for each uv ∈ E(Gh) do

4. if u, v are in different trees of G then

5. let weight(u, v) = height(Tu) + height(Tv) + 1;

6. else

7. let weight(u, v) = 0;

8. Pick an edge xy ∈ E(Gh) with the maximum weight;

9. let G = G ∪ {xy};

10. let E(Gh) = E(Gh) − {xy};

11. let A = A ∪ {xy∗};

12. return A;

*: For the returning set A, the edge in the original Gh

(before contraction) corresponding to xy should be used.

Augment2 finds out edges needed to augment a tree to a 2-edge-connected graph. This

algorithm is due to Even et al in [29]. The idea is to always add an edge incident to a leaf

such that the unique resulted cycle contains the most vertices. To achieve this objective, we

define a weight for each candidate edge uv ∈ E(Gh) (at least one of u and v is a leaf) to be the

length of the unique path between u and v in the tree, which is denoted by PG(u, v). Whenever

uv ∈ E(Gh) is selected to be added to G, we contract the vertices on path PG(u, v) before we

proceed to the next iteration. The procedure terminates when G is contracted to one vertex,

which means that the added edges have made it 2-edge-connected.

Augment2(G, Gh)

G, Gh: in

1. let A = ∅;

2. while |V (G)| > 1 do

3. for each uv ∈ E(Gh) do

www.manaraa.com

25

T
1
'

T
1

 0

 0

T
2

5
4

4

 2

4

T
3

6

0

8

7

 2

T
3

6

(a). Before adding x-y

(b). After adding x-y

T
4

T
4

x

y

x

y

Figure 4.1 An iteration of Augment1. Solid lines are current edges in G,
and dashed lines with weights are edges in Gh.

www.manaraa.com

26

4. if at least one of u, v is a leaf in G then

5. let weight(u, v) = length(PG(u, v)∗);

6. else

7. let weight(u, v) = 0;

8. Pick an edge xy ∈ E(Gh) with the maximum weight;

9. let A = A ∪ {xy∗∗};

10. Contract V (PG(x, y)) on G and Gh;

11. return A;

*: Note that throughout Augment2, we never really add edges

into G. PG(u, v) is always valid since G is always a tree.

**: For the returning set A, the edge in the original Gh

(before all contractions) corresponding to xy should be used.

4.3 Numerical Results

To evaluate the effectiveness of the strategy proposed in this chapter, we run simulations

on 100 pairs of 14-node, 21-link random logical and physical topologies, all of which are 2-edge-

connected. The minimal cost survivable mappings are computed using the ILP given in [20]

that is referred to as “OPT” later in this chapter. (The cost of a mapping is defined as the total

length of the physical paths for all logical links.) The algorithm “Easy Survivable Mapping”

will be denoted by “ESM ILP” and “ESM HEURISTIC” depending on the choice of its aug-

mentation algorithm. All simulations are run on a Sun Ultra 10 workstation equipped with a

single 440MHz CPU, 256MB RAM, and 4GB virtual memory. CPLEX8.1 is used to solve the

ILP formulations.

4.3.1 OPT vs. ESM HEURISTIC

As shown in Table 4.1, among the 100 pairs of logical/physical topologies, 7 of them don’t

have survivable mappings (note that a survivable mapping may not exist for an arbitrary pair

of logical/physical topologies). OPT can do nothing but output ”infeasible” for those 7 pairs,

www.manaraa.com

27

Table 4.1 Performance comparison of OPT and ESM HEURISTIC

Mapping Algorithm OPT ESM HEURISTIC

Number of non-survivable 7 0
logical/physical pairs

Avg. cost of 50.01 59.22
survivable mappings
Avg. running time 2.897 0.012

(sec)

Table 4.2 Performance comparison of ESM ILP and ESM HEURISTIC

Augmentation Algorithm ESM ILP ESM HEURISTIC

Avg. number of 10.98 11.96
added edges

Avg. running time 1.001 0.010
(sec)

however, ESM HEURISTIC can provide solutions by augmenting the logical topologies.

Table 4.1 also shows that the speed-up of ESM HEURISTIC over OPT is 2.897/0.012 ≈

241; on the other hand, ESM HEURISTIC pays an average of 9.21 extra cost for the map-

pings. It can be verified that as the size of logical/physical topologies grows, the expected

running time difference between OPT and ESM HEURISTIC increases dramatically since

ESM HEURISTIC is a completely polynomial-time algorithm.

4.3.2 ESM ILP vs. ESM HEURISTIC

ESM ILP and ESM HEURISTIC (excluding the computation of the shortest-path map-

ping) are run to compare the performance of the ILP and the heuristic for the augmentation

problem. Table 4.2 shows that the heuristic runs much faster than the ILP. It can also be

verified that as the size of logical/physical topologies goes up, this gap increases exponentially.

Meanwhile, the average number of added edges output by the heuristic is close to the optimal

results from the ILP.

Recall that the average extra cost produced by ESM HEURISTIC is about 9.21 over OPT,

while the average number of edges added is 11.96. This discrepancy can be explained as follows.

The minimal cost survivable mapping from a given logical topology (without augmentation)

to a physical topology might not be a shortest-path mapping because of the survivability

www.manaraa.com

28

constraints. However, after the augmentation, any shortest-path mapping will be survivable

for the resulted logical topology. Thus, given a logical topology and a physical topology, it is

always true that the extra cost resulted from ESM HEURISTIC(ESM ILP) over OPT is less

than or equal to the number of edges added computed by ESM HEURISTIC(ESM ILP).

4.4 Conclusion

This chapter presents a new approach to the survivable mapping problem. We proved that

if the intersection of the given logical and physical topology is 2-edge-connected, then any

reflectively-routed mapping (hence any shortest-path mapping) is survivable. Based on this

result, we proposed the Easy Survivable Mapping algorithm that augments the given logical

topology until its intersection with the given physical topology becomes 2-edge-connected. To

solve the NP-hard 2-edge-connectivity augmentation problem within Easy Survivable Mapping,

we give an ILP formulation to obtain optimal solution and a heuristic algorithm to make

Easy Survivable Mapping a polynomial-time algorithm. Simulation results show that our

scheme can find survivable mappings extremely fast while incuring additional mapping costs.

In addition, our scheme addresses the situation when there does not exist a survivable map-

ping for the given logical and physical topologies. Furthermore, the performance comparison

between the ILP and the heuristic for the 2-edge-connectivity augmentation problem demon-

strates the encouraging effectiveness and efficiency of the heuristic.

www.manaraa.com

29

CHAPTER 5. NEW SURVIVABLE MAPPING PROBLEM

5.1 Introduction

5.1.1 Background

While the original survivable mapping problem does not allow the given logical topology

to be changed when finding a survivable mapping for it, we note that it is sometimes beneficial

to add logical links to the given logical topology for two reasons. First, if the given logical

topology does not have a survivable mapping on the given physical topology, adding some

logical links to the given logical topology will enable a survivable mapping to be obtained.

Second, even if a survivable mapping for the given logical topology exists, adding some logical

links to the given logical topology may reduce the minimal survivable mapping cost. As in [20],

we define the cost of a mapping as the total number of wavelength channels used to map all the

logical links in the logical topology. Since a logical link (i.e., a lightpath) uses one wavelength

channel on each link along its physical path, the cost of a logical link equals the number of

hops in its physical path and the cost of a mapping equals the total cost of all logical links in

the logical topology. To see the benefit of adding logical links to a logical topology in reducing

the minimal survivable mapping cost, consider the logical and physical topologies shown in

Figure 2.1. The left table in Figure 5.1 shows the minimal cost survivable mapping for the

logical and physical topologies, which has a cost of 10. If we add link (a, e) to the logical

topology, a survivable mapping with a cost of 9 can be obtained, as shown in the right table

in Figure 5.1. Due to the benefits of adding logical links in a logical topology, we propose a

new version of the survivable mapping problem and study the problem in this chapter. The

new survivable mapping problem is the following: Given a logical topology Gl and a physical

www.manaraa.com

30

topology Gp, compute a logical topology G′
l by adding 0 or more logical links to Gl such that

G′
l has a survivable mapping on Gp and the cost of the survivable mapping is minimized.

Logical link Physical path
(a, b) A-E-D-B
(a, c) A-B-C
(b, d) B-D
(b, e) B-A-E
(c, e) C-E
(d, e) D-E

Cost of mapping 10

Logical link Physical path
(a, b) A-B
(a, c) A-B-C

(b, d) B-D
(b, e) B-A-E
(c, e) C-E
(d, e) D-E

Cost of mapping 9

(a, e) A-E

A minimal cost survivable mapping
for the original logical topology

A minimal cost survivable mapping
after adding logical link (a, e)

Figure 5.1 Minimal cost survivable mapping for the logical topology in
Figure 2.1(a) before and after adding the logical link (a, e).
Note that the logical link (a, b) is mapped differently in the
original logical topology and the new logical topology.

The idea of adding logical links to a logical topology to enable a survivable mapping has

been explored in [26]. An algorithm is given in [26] to identify a good logical link to add to

the given logical topology and simulation results show that adding one logical link can enable

a survivable mapping in most cases. A drawback of the algorithm is that it does not guarantee

to enable a survivable mapping since only one logical link is added to the logical topology. In

[30], we propose a method to add logical links to a given logical topology so that the resulting

logical topology has a survivable mapping on the given physical topology and any shortest path

mapping of the resulting logical topology on the physical topology is survivable. (A shortest

path mapping maps every logical link to the shortest physical path, which is polynomial-time

computable.) Clearly, the method can be used to enable a survivable mapping for a logical

topology if it does not have one. However, the cost of the survivable mapping for the resulting

logical topology may not be minimized because the resulting logical topology is chosen such

that a survivable mapping can be computed in polynomial time.

5.1.2 Problem Definition

We now give the formal definition of the new survivable mapping problem (NSM).

www.manaraa.com

31

NSM: Given a logical topology Gl = (V, El) and a 2-edge-connected physical topology

Gp = (V, Ep), compute a minimal cost survivable logical topology G′
l that contains Gl on Gp

and a mapping M from G′
l to Gp such that cost(M) = MIN-COSTGl

.

Note that physical topologies are required to be 2-edge-connected in practice so that any

single physical link failure does not disconnect the physical topology. (A graph is 2-edge-

connected if the minimal number of edges whose removal disconnects the graph is 2.)

The rest of this chapter is organized as follows. In section 5.2, we prove that a solution to

the new survivable mapping problem always exists and give a straightforward ILP formulation

to solve the problem. In section 5.3, we first present a theoretical result about the new

survivable mapping problem. Based on the theoretical result, we then provide an improved

ILP formulation for the problem and give an NP-hardness proof of the problem. Simulation

results are discussed in section 5.4. Finally, a conclusion is given in section 5.5.

5.2 A Straightforward ILP Formulation

First, we prove that a solution to NSM always exists.

Theorem 5.1 Given a logical topology Gl = (V, El) and a 2-edge-connected physical topology

Gp = (V, Ep), there exists a survivable logical topology that contains Gl on Gp.

Proof: Let G′
l = (V, El ∪ Ep). Clearly, G′

l contains Gl. We next prove that G′
l is a survivable

logical topology on Gp by showing that there exists a survivable mapping from G′
l to Gp. Let

M be a reflectively-routed mapping from G′
l to Gp. For any ij ∈ Ep, G

′M
l (ij) contains all

links in Ep − {ij}. Since Gp is 2-edge-connected, G
′M
l (ij) must be connected. Thus, M is a

survivable mapping from G′
l to Gp.

We now present a straightforward ILP formulation (referred to as ILP1) that solves NSM.

Let Kn denote the undirected complete graph on the vertex set V , where n = |V |. ILP1

considers all edges in E(Kn) as candidate edges to be included in the resulting logical topology,

where E(Kn) is the edge set of Kn.

Variables to be solved:

• fst
ij : takes value 1 if logical link st is mapped to a path that contains physical link ij, 0

www.manaraa.com

32

otherwise.

• xst: takes value 1 if st is included in the resulting logical topology, 0 otherwise.

Objective function:

Minimize
∑

ij∈Ed
p

st∈E(Kn)

fst
ij

Subject to:

(a). Flow conservation constraints:

∑

j s.t.
ij∈Ed

p

fst
ij −

∑

j s.t.
ji∈Ed

p

fst
ji =

xst if s = i

−xst if t = i

0 otherwise

,

∀i ∈ V, ∀st ∈ E(Kn).

(b). Survivability constraints:

∑

(s∈S∧t∈V −S)
∨

(s∈V −S∧t∈S)

fst
ij + fst

ji <
∑

(s∈S∧t∈V −S)
∨

(s∈V −S∧t∈S)

xst,

∀ij ∈ Ep, ∀S ⊂ V.

(c). Logical links in the given logical topology must be kept:

xst = 1, ∀st ∈ El.

(d). Integer constraints:

fst
ij ∈ {0, 1}, ∀ij ∈ Ed

p , ∀st ∈ E(Kn).

xst ∈ {0, 1}, ∀st ∈ E(Kn).

The flow conservation constraints in (a) ensure that a logical link is mapped to a physical

path only if it is included in the resulting logical topology, i.e., xst = 1. In the survivability

constraints in (b), the right hand side is the number of edges in the edge cut ECG′
l
(S) and the

left hand side is the number of edges in ECG′
l
(S) that are mapped to a physical path containing

www.manaraa.com

33

ij ∈ Ep in either direction, which equals |lM (ij) ∩ ECG′
l
(S)|, where G′

l is the resulting logical

topology and M is the resulting mapping from G′
l to Gp. It is proved in [20] that M is survivable

if and only if |lM (ij) ∩ ECG′
l
(S)| < |ECG′

l
(S)| for all ij ∈ Ep and all S ⊂ V . Therefore, the

constraints in (b) ensure that the resulting mapping is survivable. Constraints in (c) ensure

that the logical links in the given logical topology must stay in the resulting logical topology.

5.3 A Theorem and Its Applications

ILP1 provides a straightforward method for solving NSM, which considers all links not in

Gl as candidate links to be added to Gl. In this section, we present a theorem which shows that

we can obtain a solution to NSM by adding only reflective logical links to Gl, and the resulting

logical topology has a reflectively-routed survivable mapping that achieves the minimal cost.

We also give two applications of the theorem: an improved ILP for NSM and an NP-hardness

proof for NSM.

5.3.1 A Theorem

Theorem 5.2 Given a logical topology Gl = (V, El) and a 2-edge-connected physical topology

Gp = (V, Ep), there exists an edge set E′′ ⊆ Ep −El such that G′′
l = (V, El ∪E′′) is a minimal

cost survivable logical topology that contains Gl on Gp. Moreover, there is a reflectively-routed

survivable mapping M ′′ from G′′
l to Gp such that cost(M ′′) = MIN-COSTGl

.

Proof: See Appendix.

The theorem shows that given a logical topology Gl and a 2-edge-connected physical topol-

ogy Gp, it is always possible to obtain a minimal cost survivable logical topology that contains

Gl on Gp by adding only reflective logical links to Gl. Furthermore, the resulting logical

topology has a reflectively-routed survivable mapping that achieves the minimal cost.

5.3.2 An Improved ILP Formulation

Theorem 5.2 can be used to improve ILP1 in two ways. First, the candidate logical links

to be included in the resulting logical topology can be confined to links in El ∪ Ep instead

www.manaraa.com

34

of links in E(Kn). This helps reduce the number of variables in ILP1. Second, the existence

of the minimal cost reflectively-routed survivable mapping for the resulting logical topology

makes the mapping job easier since the physical paths for those reflective logical links can be

determined right away (they are reflectively-routed). The improved ILP, referred to as ILP2,

is given as follows.

Minimize
∑

ij∈Ed
p

st∈El∪Ep

fst
ij

Subject to:

(a). Flow conservation constraints:

∑

j s.t.
ij∈Ed

p

fst
ij −

∑

j s.t.
ji∈Ed

p

fst
ji =

1 if s = i

−1 if t = i

0 otherwise

,

∀i ∈ V, ∀st ∈ El − Ep.

(a’). Reflectively-routed constraints:

fst
st = xst, ∀st ∈ Ep. (5.1)

fst
ij = 0, ∀st ∈ Ep, ij ∈ Ed

p and (i 6= s ∨ j 6= t). (5.2)

(b). Survivability contraints: Same as those in ILP1.

(c). Logical links in the given logical topology must be kept: Same as those in ILP1.

(d). Integer constraints:

fst
ij ∈ {0, 1}, ∀ij ∈ Ed

p , ∀st ∈ El ∪ Ep.

xst ∈ {0, 1}, ∀st ∈ El ∪ Ep.

The flow conservation constraints in (a) are only used for logical links in El − Ep because

other logical links are reflective and will be reflectively-routed. The constraints in (a’) en-

sure that reflective logical links are reflectively-routed. Note that the existence of a resulting

www.manaraa.com

35

survivable logical topology and the corresponding reflectively-routed survivable mapping is

guaranteed by Theorem 5.2.

Compared with ILP1, ILP2 has fewer variables and fewer flow conservation constraints. As

a result, ILP2 runs faster than ILP1, as will be shown in section 5.4.

5.3.3 NP-hardness of NSM

With the help of Theorem 5.2, we can prove that NSM is NP-hard by showing that

M2ECSS is polynomial-time reducible to NSM, where M2ECSS stands for the Minimum 2-

Edge-Connected Spanning Subgraph problem that has been proved to be NP-hard [31].

For the purpose of the proof, we define the decision problem of M2ECSS and NSM as

follows.

M2ECSS: Given a graph G and a positive integer k, determine whether G has a 2-edge-

connected spanning subgraph containing at most k edges.

NSM: Given a logical topology Gl, a physical topology Gp, and a positive integer c,

determine whether there is a survivable logical topology G′
l that contains Gl on Gp such that

the cost of G′
l is at most c.

Theorem 5.3 NSM is NP-hard.

Proof: We show that M2ECSS is polynomial-time reducible to NSM.

Given an instance 〈G, k〉 of M2ECSS, we construct an instance 〈Gl, Gp, c〉 of NSM as follows:

• Let Gl be a graph with the same vertex set as G and no edges, which is denoted as G∅.

• Let Gp = G.

• Let c = k.

Clearly, the construction is polynomial-time computable.

Next, we show that G has a 2-edge-connected spanning subgraph containing at most k

edges if and only if there is a survivable logical topology G′
l that contains G∅ on G such that

the cost of G′
l is at most k.

www.manaraa.com

36

Suppose Gsub is a 2-edge-connected spanning subgraph of G and |E(Gsub)| ≤ k. Consider

Gsub as a logical topology and G as a physical topology, then all links in Gsub are reflective.

Let M be the reflectively-routed mapping from Gsub to G, then cost(M) = |E(Gsub)| ≤ k.

Under M , any single link failure in G will affect at most one link in Gsub. Since Gsub is 2-edge-

connected, the failure will not disconnect Gsub. Therefore, M is a survivable mapping. Hence,

Gsub is a survivable logical topology that contains G∅ on G such that cost(Gsub) = cost(M) ≤ k.

Suppose there is a survivable logical topology that contains G∅ on G such that its cost is

at most k, then we have MIN-COSTG∅
≤ k. By Theorem 5.2, we can obtain a minimal cost

survivable logical topology that contains G∅ on G (denoted as Gmin) by adding only reflective

logical links to G∅. Thus, Gmin is a spanning subgraph of G. Let M be the reflectively-routed

mapping from Gmin to G. By Theorem 5.2, M is a survivable mapping that achieves the

minimal cost, i.e., cost(M) = |E(Gmin)| = MIN-COSTG∅
≤ k. Therefore, Gmin is a spanning

subgraph of G with at most k edges. Also, Gmin must be 2-edge-connected because the

reflectively-routed mapping M from Gmin to G is survivable. So, Gmin is a 2-edge-connected

spanning subgraph of G with at most k edges.

5.4 Numerical Results

5.4.1 Simulation Settings

We use two physical topologies (shown in Figure 5.2) in the simulations. The first one is

the 14-node 21-link NSFNET and the second one is a 12-node 18-link random graph (referred

to as RANDOM). Both physical topologies are 2-edge-connected. For each physical topology,

two groups of 2-edge-connected logical topologies, referred to as GROUP1 and GROUP2,

are used. For NSFNET, GROUP1 consists of 100 14-node 17-link random topologies and

GROUP2 consists of 100 14-node 21-link random topologies. For RANDOM, GROUP1 consists

of 100 12-node 15-link random topologies and GROUP2 consists of 100 12-node 18-link random

topologies. All simulations are run on a Sun Ultra 10 workstation with a 440MHz CPU, 256MB

RAM, and 4GB virtual memory. CPLEX8.1 is used as the ILP solver.

www.manaraa.com

37

11 1

2

3

4
5

6

7

8

10 14

12

13

9

1

7

4 10

2

3

12

11

5

6

9

8

(a). NSFNET (b). RANDOM

Figure 5.2 Physical topologies used in the simulations.

5.4.2 Significance of the New Survivable Mapping Problem

As discussed in section 5.1, the new survivable mapping problem provides two benefits by

allowing logical link addition to the given logical topology. First, a survivable mapping can

be obtained for a non-survivable logical topology. Second, the minimal survivable mapping

cost may be reduced for a survivable logical topology. To see these benefits, we run ILP2

and the ILP provided in [20] (denoted as ILP ORIG) on the physical and logical topologies

described in the previous subsection. Note that ILP2 solves the new survivable mapping

problem that allows adding new logical links to the given logical topology while ILP ORIG

solves the original survivable mapping problem that does not allow the given logical topology

to be changed. Thus, given a pair of logical and physical topologies, ILP2 can always find

a minimal cost survivable logical topology that contains the given logical topology and the

corresponding minimal cost survivable mapping; on the other hand, ILP ORIG can obtain a

minimal cost survivable mapping for the pair only if the given logical topology is survivable.

Although both ILP1 and ILP2 solve the new survivable mapping problem, we use ILP2 in the

simulations since it runs faster than ILP1.

Table 5.1 shows the improvement made by ILP2 over ILP ORIG. For GROUP1 over

NSFNET, 43 out of 100 logical topologies are not survivable (i.e., ILP ORIG can’t obtain

a survivable mapping). However, ILP2 can transform these non-survivable logical topologies

into survivable ones by adding new logical links. Among the 57 survivable logical topologies,

ILP2 obtains lower cost than ILP ORIG for 50 (about 88%) of them. That is, 50 surviv-

www.manaraa.com

38

Table 5.1 Improvement of ILP2 over ILP ORIG

Physical topology NSFNET RANDOM
Logical topology GROUP1 GROUP2 GROUP1 GROUP2

non-survivable
logical topologies 43 1 53 10

fixed by ILP2

survivable
logical topologies 50 42 28 28
improved by ILP2

Maximum(Average)
cost saving ratio∗ 20.8% 12.0% 17.4% 10.4%
among improved (7.2%) (3.5%) (7.0%) (3.7%)

survivable logical topologies
∗: cost saving ratio is defined as
cost computed by ILP ORIG−cost computed by ILP2

cost computed by ILP ORIG
.

able logical topologies can achieve lower survivable mapping cost by adding new logical links.

Moreover, among the 50 improved logical topologies, the maximum/average cost saving ratio

is 20.8%/7.2%. For GROUP2 over NSFNET, 1 logical topology is not survivable, for which

ILP ORIG can’t find a solution while ILP2 can. Among the 99 survivable logical topologies,

42 (about 42%) can achive lower survivable mapping cost by adding new logical links and the

maximum/average cost saving ratio is 12.0%/3.5%. These results show that 1) GROUP1 has

a larger number of non-survivable logical topologies than GROUP2, 2) among the survivable

logical topologies, the percentage of improved ones is larger in GROUP1 than in GROUP2, and

3) the maximum/average cost saving ratio among the improved survivable logical topologies

is larger in GROUP1 than in GROUP2. Thus, the overall improvement on GROUP1 is more

than on GROUP2. This suggests that the new survivable mapping problem exhibits more

significance on sparser logical topologies than on denser ones. This is intuitive because denser

logical topologies are generally closer to survivable, and the room to reduce the survivable

mapping cost is generally smaller in denser logical topologies. For RANDOM, the results in

Table 5.1 also show the benefits of adding logical links to the given logical topology in enabling

a survivable mapping and reducing minimal survivable mapping cost. Again, the overall im-

provement on GROUP1 is more than on GROUP2 since the logical topologies in GROUP1 are

sparser than the logical topologies in GROUP2.

www.manaraa.com

39

5.4.3 Running Time Comparison Between ILP1 and ILP2

To evaluate the running time improvement made by ILP2 over ILP1, we run ILP1 and

ILP2 on GROUP1 over NSFNET and GROUP1 over RANDOM. For NSFNET, the average

running time of ILP2 over all the 100 logical topologies in GROUP1 is 3505 seconds (about 1

hour), and the running time of ILP1 for a randomly selected logical topology in GROUP1 is

128593 seconds (about 35 hours and 43 minutes). (We did not run ILP1 for all the 100 logical

topologies in GROUP1 due to its long running time.) For RANDOM, the average running

time over the 100 logical topologies in GROUP1 taken by ILP1 and ILP2 are 544 seconds and

28 seconds respectively. The average speedup of ILP2 over ILP1 is 544sec/28sec ≈ 20. For

both physical topologies, ILP2 runs much faster than ILP1. As explained in section 5.3-B, this

is because ILP2 has fewer variables and fewer flow conservation constraints than ILP1.

5.5 Conclusion

In this chapter, we proposed the following new survivable mapping problem: given a phys-

ical topology and a logical topology, compute a minimal cost survivable logical topology that

contains the given logical topology and the corresponding minimal cost survivable mapping.

The problem is significant for two reasons: 1) If the given logical topology is not survivable, we

can add logical links to it to make it survivable; 2) If the given logical topology is survivable,

we may reduce the minimal survivable mapping cost by adding logical links to it. We proved

that a solution to the new survivable mapping problem always exists and provided a straight-

forward ILP formulation (ILP1) to solve the problem. Furthermore, we proved that we can

find a solution to the new survivable mapping problem by only adding reflective logical links to

the given logical topology, and the resulting logical topology has a reflectively-routed surviv-

able mapping that achieves the minimal cost. Based on this result, we developed an improved

ILP formulation (ILP2) that solves the new survivable mapping problem more efficiently and

proved that the new survivable mapping problem is NP-hard. The benefits of adding logical

links to a logical topology in enabling a survivable mapping and reducing minimal survivable

mapping cost are demonstrated through simulations. Simulation results also show that ILP2

www.manaraa.com

40

achieves significant speedup over ILP1.

Appendix

We prove Theorem 5.2 in this section. First, we prove the following lemma.

Lemma Given a physical topology Gp = (V, Ep), for any survivable logical topology Gl = (V, El)

on Gp, there exists a set E′ ⊆ Ep −El such that G′
l = (V, El ∪E′) has a survivable reflectively-

routed mapping M ′ and cost(M ′) ≤ cost(Gl).

Proof: Let M be a minimal cost survivable mapping from Gl to Gp. If M is reflectively-

routed, just let E′ = ∅. Then G′
l = Gl has a survivable reflectively-routed mapping M ′ = M

and cost(M ′) = cost(Gl).

If M is not reflectively-routed, we call the procedure TRANSFORM(Gl, Gp, M) to trans-

form M and Gl so that the resulting Gl is obtained by adding links in Ep − E(Gold
l) to

Gold
l and the resulting M is a survivable reflectively-routed mapping from Gl to Gp with

cost(M) ≤ cost(Gold
l), where Gold

l and Mold denote the old logical topology and the old map-

ping inputted to the procedure. The pseudo-code of the procedure TRANSFORM is given

below. The correctness proof of the procedure follows the pseudo-code.

TRANSFORM(Gl, Gp, M)

Gl, M : inout parameter

Gp: in parameter

1. for each non-reflectively-routed st ∈ El ∩ Ep do

2. let M(st) = (s − t);

3. REMOVE CRITICAL LINK(Gl, Gp, M , st);

REMOVE CRITICAL LINK(Gl, Gp, M , st)

Gl, M : inout parameter

Gp, st: in parameter

1. Pick s′ ∈ V (C1), t′ ∈ V (C2)
∗ such that s′t′ ∈ Ep − El;

www.manaraa.com

41

2. if such s′t′ exists then

3. let El = El ∪ {s′t′}; M(s′t′) = (s′ − t′);

4. else

5. Pick x ∈ V (C1), y ∈ V (C2) such that

xy ∈ El ∩ Ep and xy 6= st;

6. let M(xy) = (x − y);

7. REMOVE CRITICAL LINK(Gl, Gp, M , xy);

*: As stated in Claim 1 (given later), upon entering procedure REMOVE CRITICAL LINK,

M is a non-survivable mapping with st ∈ Ep being the only critical link, whose failure will

disconnect Gl into two connected components C1 and C2.

We have the following observations about TRANSFORM.

Observation 1: In the resulting Gl, all links in Gold
l are kept and the newly added links

are all from Ep − E(Gold
l).

It is easy to verify that there is no logical link deletion anywhere in TRANSFORM and in

REMOVE CRITICAL LINK. The only place where logical link addition occurs is at line 3 of

REMOVE CRITICAL LINK and the added logical link belongs to Ep − E(Gold
l).

Observation 2: The cost of M never increases.

Every time before REMOVE CRITICAL LINK is called (at line 2 of TRANSFORM or at

line 6 of REMOVE CRITICAL LINK), a reflective logical link is rerouted from a multi-hop

physical path to a single-hop physical path, which decreases the cost of M by at least 1. On

the other hand, within REMOVE CRITICAL LINK, at most one logical link is added (at line

3). The added logical link is a reflective logical link and is reflectively-routed, which increases

the cost of M by 1. Thus, the cost of M never increases.

In TRANSFORM, if M is a survivable mapping from Gl to Gp at the beginning of an

iteration of the for loop, then we have the following two claims.

Claim 1: After line 2 is executed and before REMOVE CRITICAL LINK is called, M is

a non-survivable mapping from Gl to Gp with st ∈ Ep being the only critical link. The failure

of st will disconnect Gl into two connected components with one component containing s and

www.manaraa.com

42

the other component containing t.

Claim 2: REMOVE CRITICAL LINK always returns. Moreover, when it returns, M is

a survivable mapping from Gl to Gp.

If Claim 1 and Claim 2 hold, then each iteration of the for loop in TRANSFORM elimi-

nates at least one non-reflectively-routed reflective logical link and end up with a survivable

mapping M from Gl to Gp with no new non-reflectively-routed reflective logical link being

introduced. (REMOVE CRITICAL LINK only adds reflectively-routed reflective logical links

to Gl at line 3.) Since there is a finite number of non-reflectively-routed reflective logical links,

TRANSFORM always terminates with a survivable reflectively-routed mapping M from Gl to

Gp. Together with Observation 1 and Observation 2, we know that TRANSFORM returns

Gl and M such that Gl is obtained by adding links in Ep − E(Gold
l) to Gold

l , and M is a

reflectively-routed survivable mapping from Gl to Gp with cost(M) ≤ cost(Gold
l). Thus, if we

can prove Claim 1 and Claim 2, the proof of Lemma is done. In the following, we give the

proofs for Claim 1 and Claim 2.

Proof of Claim 1: Let M before/Mafter denote the mapping before/after line 2 of TRANS-

FORM is executed. Assume Mafter is survivable. We have cost(Mafter) < cost(M before) since

st is rerouted from a multi-hop physical path to a single-hop physical path at line 2 of TRANS-

FORM. This contradicts the fact that M before is a minimal cost survivable mapping from Gl to

Gp. Therefore, Mafter must be non-survivable. Furthermore, st ∈ Ep must be the only critical

link under Mafter since st ∈ Ep is the only physical link whose load set expands because of

the reroute. (The reroute causes st ∈ El to be included in the load set of st ∈ Ep.) Since

st ∈ Ep becomes a critical link under Mafter and st ∈ El is the only new logical link added

to the load set of st ∈ Ep due to the reroute, st ∈ El must be a bridge in GMbefore

l (st). Thus,

under Mafter, the failure of st ∈ Ep will disconnect Gl into two connected components, one

containing s and the other containing t.

(End of Proof of Claim 1)

Proof of Claim 2: The correctness of Claim 2 is based on the following four facts about

the procedure REMOVE CRITICAL LINK. Each fact is followed by a proof.

www.manaraa.com

43

Fact 1: At line 5, it is always possible to find x and y that meet the condition. And xy

found in line 5 is a non-reflectively-routed reflective logical link.

To enter line 5, we must have

∀s′ ∈ V (C1), t
′ ∈ V (C2), s

′t′ ∈ Ep ⇒ s′t′ ∈ El (*)

Because Gp is 2-edge-connected, the edge cut ECGp(V (C1)) must contain at least one more

physical link xy 6= st besides st. By (*), xy must also be in El. Therefore, it is always possible

to find x ∈ V (C1) and y ∈ V (C2) such that xy ∈ El ∩ Ep and xy 6= st.

Since st ∈ Ep is a critical link when line 5 is executed, we have ECGl
(V (C1)) ⊆ lM (st).

Since xy is in ECGl
(V (C1)), xy is also in lM (st). This means that xy ∈ El ∩ Ep is routed on

st(6= xy) ∈ Ep. So xy is a non-reflectively-routed reflective logical link.

Fact 2: After line 6 is executed, st is not a critical link. Moreover, xy is the only critical

link whose failure will disconnect Gl into two connected components, one containing x and the

other containing y.

After line 6 is executed, xy ∈ El is no longer in the load set of st ∈ Ep. And because

x ∈ V (C1) and y ∈ V (C2), the failure of st ∈ Ep will not disconnect Gl now. So st is

not a critical link. However, the mapping becomes non-survivable after line 6 is executed.

Let M before/Mafter denote the mapping before/after line 6 is executed. Assume Mafter is

survivable. We have cost(Mafter) < cost(M before) since xy is rerouted from a multi-hop

physical path to a single-hop physical path at line 6. This contradicts the fact that M before is

a minimal cost survivable mapping from Gl to Gp. Therefore, Mafter must be non-survivable.

Also, xy ∈ Ep must be the only critical link under Mafter because xy ∈ Ep is the only physical

link whose load set expands because of the reroute. (The reroute causes xy ∈ El to be included

in the load set of xy ∈ Ep.) Since xy ∈ Ep becomes a critical link under Mafter and xy ∈ El is

the only new logical link added to the load set of xy ∈ Ep due to the reroute, xy ∈ El must be

a bridge in GMbefore

l (xy). Thus, under Mafter, the failure of xy ∈ Ep will disconnect Gl into

two connected components, one containing x and the other containing y.

Fact 3: After line 3 is executed, s′t′ 6= st and neither st ∈ Ep nor s′t′ ∈ Ep is a critical

link.

www.manaraa.com

44

Before line 3 is executed, st ∈ El and s′t′ 6∈ El, so s′t′ 6= st. After line 3 is executed, the

newly added logical link s′t′ is not routed on st, so the failure of st ∈ Ep will not affect s′t′ ∈ El.

As a result, the remaining logical topology upon the failure of st ∈ Ep will be connected with

s′t′ ∈ El being a bridge between C1 and C2. Thus, st ∈ Ep is no longer a critical link. As

of s′t′ ∈ Ep, a new logical link s′t′ ∈ El is added to the load set of s′t′ ∈ Ep after line 3 is

executed. Assume that s′t′ ∈ Ep is critical now, it must be critical also before s′t′ ∈ El is added

to Gl, which contradicts the fact that st ∈ Ep is the only critical link at that time (this fact is

shown by Claim 1 if REMOVE CRITICAL LINK is called from line 3 of TRANSFORM, and

by Fact 2 if REMOVE CRITICAL LINK is called from line 7 of itself). Thus, s′t′ ∈ Ep is not

a critical link after s′t′ ∈ El is added to Gl.

Fact 4: After st ∈ Ep becomes non-critical in REMOVE CRITICAL LINK, it will never

become critical again till the end of TRANSFORM. Also, for each logical link s′t′ added to

Gl at line 3 of REMOVE CRITICAL LINK, the corresponding physical link s′t′ will never

become critical again either.

After st ∈ Ep becomes non-critical in REMOVE CRITICAL LINK, st ∈ El is reflectively-

routed. The load set of st ∈ Ep will never include other logical links till the end of TRANS-

FORM because

(1) All new logical links added at line 3 of REMOVE CRITICAL LINK will be reflectively-

routed.

(2) We only reroute non-reflectively-routed reflective logical links to make them reflectively-

routed (at line 2 of TRANSFORM and at line 6 of REMOVE CRITICAL LINK).

So st ∈ Ep will never become critical again.

Because of the same reasons, s′t′ ∈ Ep will never become critical again either.

During the execution of REMOVE CRITICAL LINK, if the “then” branch is entered,

Fact 3 tells us that st ∈ Ep will become non-critical, and for the newly added logical link

s′t′ ∈ El, the corresponding s′t′ ∈ Ep is not critical either. On the other hand, if the “else”

branch is entered, Fact 1 and Fact 2 tell us that st will become non-critical and another

physical link xy will become critical. Thus, REMOVE CRITICAL LINK always eliminates

www.manaraa.com

45

one critical link (st) and may introduce another critical link (xy). Fact 4 guarantees that

once st becomes non-critical, it will never become critical again. Also, for each logical link

s′t′ added to the logical topology, the corresponding s′t′ ∈ Ep will never become critical

again either. Since we have a finite number of physical links that are potential critical links,

REMOVE CRITICAL LINK will always return with no critical link existing in Gp. Therefore,

when REMOVE CRITICAL LINK returns, M is a survivable mapping from Gl to Gp.

(End of Proof of Claim 2)

As argued earlier, Observations 1 and 2 together with Claims 1 and 2 prove Lemma.

We now give the proof of Theorem 5.2.

Theorem 5.2 Given a logical topology Gl = (V, El) and a 2-edge-connected physical topology

Gp = (V, Ep), there exists an edge set E′′ ⊆ Ep −El such that G′′
l = (V, El ∪E′′) is a minimal

cost survivable logical topology that contains Gl on Gp. Moreover, there is a reflectively-routed

survivable mapping M ′′ from G′′
l to Gp such that cost(M ′′) = MIN-COSTGl

.

Proof: Let G = (V, E) be a minimal cost survivable logical topology that contains Gl on

Gp. Let M be a minimal cost survivable mapping from G to Gp. Then cost(M) = cost(G) =

MIN-COSTGl
.

CASE I: All logical links in E − El are reflective, i.e., E − El ⊆ Ep − El.

If M is a reflectively-routed mapping, then E′′ = E − El, G′′
l = G, and M ′′ = M are the

edge set, the logical topology, and the mapping we are looking for.

If M is not a reflectively-routed mapping from G to Gp, then by Lemma, there exists

E′ ⊆ Ep − E such that G′ = (V, E ∪ E′) has a survivable reflectively-routed mapping M ′

from G′ to Gp and cost(M ′) = cost(M). (It is impossible to get cost(M ′) < cost(M) since

cost(M) = MIN-COSTGl
.) Then E′′ = (E ∪ E′) − El, G′′

l = G′, and M ′′ = M ′ are the edge

set, the logical topology, and the mapping we are looking for.

CASE II: At least one logical link in E − El is non-reflective, i.e., ∃st ∈ E − El such that

st 6∈ Ep.

In this case, we call the procedure PURIFY(Gl, Gp, G, M) to transform G and M so

that the resulting G is a minimal cost survivable logical topology that contains Gl on Gp and

www.manaraa.com

46

E − El ⊆ Ep − El. And the resulting M is a reflectively-routed survivable mapping from

G to Gp with cost(M) = MIN-COSTGl
. The pseudo-code of PURIFY is given below. The

correctness proof of PURIFY follows the pseudo-code.

PURIFY(Gl, Gp, G, M)

Gl, Gp: in parameter

G, M : inout parameter

1. if M is not reflectively-routed then

2. Find G′ = (V, E ∪ E′) and M ′ such that

E′ ⊆ Ep − E and M ′ is a reflectively-routed

survivable mapping from G′ to Gp

and cost(M ′) = cost(M);

3. let G = G′; M = M ′;

4. for each st ∈ (E − El) − Ep do

5. let E = E − {st};

6. for each ij ∈ M(st) do

7. let E = E ∪ {ij};

8. let M(ij) = (i − j);

We have the following observations about PURIFY.

Observation 3: When PURIFY returns, G contains all logical links in Gl and all logical

links in E − El are reflective.

In PURIFY, logical link removal only occurs at line 5, where st ∈ (E−El)−Ep is removed.

Thus, all logical links in Gl are kept in G. In the for loop from line 4 to line 8, each non-

reflective logical link st ∈ E − El is removed and replaced by a set of reflective logical links

corresponding to the physical links in M(st). Therefore, all logical links in E−El are reflective.

Observation 4: The cost of M never increases or decreases.

Clearly, the cost of M cannot decrease because cost(M) = MIN-COSTGl
when M is

inputted to PURIFY.

www.manaraa.com

47

We now show that the cost of M never increases. If the mapping M inputted to PURIFY

is not a reflectively-routed mapping, then line 2 is executed. By Lemma, we can successfully

find G′ and M ′ at line 2 and the cost of the mapping does not increase. In each iteration of the

for loop at line 4, on the one hand, st ∈ (E −El)−Ep is removed from G, which decreases the

cost of M by |M(st)|; on the other hand, at most |M(st)| reflectively-routed reflective logical

links are added to G, which increases the cost of M by at most |M(st)|. Thus, the cost of M

does not increase in the for loop. Overall, the cost of M never increases in PURIFY.

Within one iteration of the for loop at line 4 in PURIFY, we use Gbefore/M before and

Gafter/Mafter to denote the logical topology/mapping before removing st and after adding

ij’s in M(st) and mapping them reflectively. For each iteration of the for loop, if M before is a

survivable mapping, then we have the following two claims.

Claim 3: ∀ij ∈ M before(st), ij is not a critical link under Mafter.

Claim 4: ∀ij ∈ Ep − M before(st), ij is not a critical link under Mafter.

If Claim 3 and Claim 4 hold, each iteration of the for loop at line 4 eliminates exactly

one non-reflective logical link in E − El without breaking the survivability of the mapping or

introducing any new non-reflective logical links. Since we have a finite number of non-reflective

logical links in E − El, PURIFY always terminates with M being a survivable mapping from

G to Gp. In addition, M is a reflectively-routed mapping when PURIFY terminates. This

is because M is a reflectively-routed mapping before the for loop is executed and all the

logical links added in the for loop are reflective and are reflectively-routed. By Observation

3 and Observation 4, the logical topology G = (V, E) returned by PURIFY is a minimal

cost survivable logical topology that contains Gl on Gp and E − El ⊆ Ep − El, and the

mapping M returned by PURIFY is a reflectively-routed survivable mapping from G to Gp

with cost(M) = MIN-COSTGl
. So if we can prove Claim 3 and Claim 4, the proof of Theorem

5.2 is done.

In the following, we give the proofs for Claim 3 and Claim 4.

Proof of Claim 3: For all ij ∈ M before(st), we have lMafter(ij) = (lMbefore(ij) − {st}) ∪

{ij}. Assume that ij ∈ Ep is critical under Mafter, then the failure of ij ∈ Ep will disconnect

www.manaraa.com

48

C
1

C
2

i j

s t

...

Gafter

Figure 5.3 Illustration for the Proof of Claim 3. Solid (thin and thick)
lines are logical links in lMafter(ij). Thick solid lines are logical

links in ECGafter(V (C1)). The dashed line is st ∈ E(Gbefore).
The dotted lines denote the logical path from s to i and the
logical path from j to t in Gafter. This diagram shows that if
the removal of lMafter(ij) disconnects Gafter, then the removal
of lMbefore(ij) = (lMafter(ij)−{ij})∪{st} would also disconnect
Gbefore.

the Gafter into two connected components C1 and C2, one containing i and the other containing

j. This is because ij ∈ Ep is not critical under M before and ij ∈ E(Gafter) is the only logical

link that is contained in lMafter
(ij) but not in lMbefore

(ij).

On the other hand, all logical links in E(Gafter) except ij along the logical path correspond-

ing to M before(st) are reflectively-routed, so these logical links will not be affected by the failure

of ij ∈ Ep under Mafter. In other words, only ij ∈ E(Gafter) is broken on the logical path cor-

responding to M before(st) when ij ∈ Ep fails. Without loss of generality, suppose s, i ∈ V (C1)

and t, j ∈ V (C2). As can be seen from Figure 5.3, if ij ∈ Ep is critical under Mafter, ij ∈ Ep

must be critical under M before because removing lMbefore(ij) = (lMafter(ij)−{ij})∪{st} from

Gbefore would disconnect Gbefore. This contradicts the fact that M before is survivable. Thus,

ij ∈ Ep is not critical under Mafter.

www.manaraa.com

49

(End of Proof of Claim 3)

Proof of Claim 4: Consider ij ∈ Ep − M before(st). Assume ij is critical under Mafter.

Since the load set of ij under Mafter is the same as that under M before, the only possible

reason that makes ij critical under Mafter is the loss of st ∈ E(Gbefore) in Gafter. So, the

failure of ij will disconnect Gafter into two connected components, one containing s and the

other containing t. However, this is impossible because there exists a path in Gafter from s to

t when ij fails since all the logical links along the logical path corresponding to M before(st)

are reflectively-routed under Mafter and therefore not affected by the failure of ij. Thus, ij is

not a critical link under Mafter.

(End of Proof of Claim 4)

As argued earlier, Observations 3 and 4 together with Claims 3 and 4 prove Theorem 5.2.

www.manaraa.com

50

CHAPTER 6. OVERVIEW OF P-CYCLE DESIGN

p-Cycle is a promising approach for survivable WDM network design because of its ability to

achieve ring-like recovery speed while maintaining the capacity efficiency of a mesh-restorable

network [2]. A p-cycle is a pre-configured cycle formed out of the spare capacity in the network,

which occupies one unit of spare capacity on each on-cycle span (from this chapter, a “span”

is equivalent to a “link”). Like a self-healing ring, a p-cycle provides one restoration path for

every on-cycle span; unlike a self-healing ring, a p-cycle also provides two restoration paths for

every straddling span – a span whose two end nodes are on the cycle but itself is not on the

cycle. As shown in Figure 6.1, a − b − c − d − f − a is a p-cycle. For the on-cycle span a − b,

the p-cycle provides one restoration path a− f − d− c− b. For the straddling span f − b, the

p-cycle provides two restoration paths: f − a− b− c and f − d− c. Thus, a p-cycle can protect

one unit of working capacity on every on-cycle span and protect two units of working capacity

on every straddling span.

p-Cycle design is considered as a promising protection scheme since it combines the advan-

tages of the link-based protection and path-based protection. In link-based protection, fast

restoration is achieved because when a link fails, both end nodes will detect the failure imme-

diately and initiate the restoration of the traffic on this link onto a pre-computed back-up path

right away. While in path protection, the backup paths are configured between source desti-

nation node pairs. When a link failure happens, both end nodes of this link will have to notify

each affected flow’s source and/or destination so that they can start to redirect their traffic onto

corresponding backup paths. This results in longer restoration time compared to link-based

protection. On the other hand, path-based protection is more cost-effective than link-based

protection in terms of spare capacity consumption [32]. p-Cycle achieves fast restoration like

www.manaraa.com

51

e

f

b

cd

a

Figure 6.1 A p-cycle example

link-based protection since the end nodes of a failed link would reroute the interrupted traffic

along the protection path(s) provided by pre-configured p-cycles right after the failure is de-

tected. Moreover, p-cycle protection also yields efficient spare capacity usage because p-cycle

offers two restoration paths for a straddling span.

www.manaraa.com

52

CHAPTER 7. FINDING GOOD CANDIDATE CYCLES

7.1 Optimal p-Cycle Protection Design and Heuristics

The problem of finding an optimal set of p-cycles to protect a given set of traffic demands

is a basic design issue. Two versions of the optimization problem have been studied: non-joint

version and joint version. In the non-joint version, working capacity on every span is given (i.e.,

routing of the working paths for the demands are known) and the objective is to find a set of

p-cycles to protect the working capacity so that the total spare capacity used by the p-cycles is

minimized [2][33][34][35]. In the joint version, the routing of the working paths for the demands

and the p-cycles are computed jointly so that the total capacity (i.e., working capacity plus

spare capacity) is minimized [36][37][38]. A common approach for solving the optimization

problems is Integer Linear Programming (ILP). In this approach, a set of candidate p-cycles

is precomputed and supplied to an ILP formulated to find the optimal set of p-cycles out of

the candidate p-cycles. The ILP will give the optimal solution when the candidate p-cycle

set includes all the cycles in the network. However, since the number of cycles in a network

grows exponentially with the network size, various methods have been proposed to reduce the

size of the candidate p-cycle set. One method is to limit the maximal length of the candidate

p-cycles[2][33]. Another method defines a metric called a priori efficiency (AE) for each cycle.

AE(p) =
∑

i∈S Xp,i
∑

i∈S,Xp,i=1
ci

where S is the set of spans in the network, ci is the cost of a unit

capacity on span i, and Xp,i is the number of restoration paths that cycle p can provide

for span i. Xp,i = 1 if i is an on-cycle span, Xp,i = 2 if i is a straddling span, Xp,i = 0

otherwise [36]. Assuming ci = 1 for all i ∈ S, then the AE metric of the p-cycle shown

in Figure 6.1 is 2∗3+5
5 = 2.2 since it has 3 straddling spans and 5 on-cycle spans. then the

first k cycles with the highest AE score are chosen as the candidate p-cycles where k is an

www.manaraa.com

53

adjustable parameter[36]. While both methods can reduce the number of candidate p-cycles,

they still require the enumeration of all cycles in the network. To address this problem, an

algorithm called SLA that generates a set of candidate p-cycles without enumerating all cycles

was proposed in [39]. The idea is to generate one p-cycle for each span in the network so that

the span is a straddling span of the p-cycle.

On the other hand, since the running time of ILP for large networks is prohibitively long, a

heuristic algorithm for the non-joint version of the p-cycle optimization problem called CIDA

was proposed in [34]. In CIDA, a set of candidate p-cycles is computed first, then one p-cycle

is chosen iteratively from the candidate p-cycle set and placed in the network to reduce the

unprotected working capacity until all working capacities are protected. In each iteration, the

p-cycle with the highest actual efficiency is selected. The actual efficiency for a p-cycle p is

defined as Ew(p) =
∑

i∈S wi∗Xp,i
∑

i∈S,Xp,i=1
ci

where wi is the amount of unprotected working capacity on

span i. Unlike a priori efficiency, actual efficiency depends not only on the number of on-cycle

and straddling spans, but also on the unprotected working capacity of those spans. Three

algorithms (SP-Add, Expand, and Grow) were proposed in [34] to generate candidate p-cycles

for CIDA. All three algorithms start with the set of primary cycles generated by SLA and then

create more cycles from each primary cycle by replacing an on-cycle span by a path between

the end nodes of the span, which converts the on-cycle span to a straddling one. The p-cycles

generated by the three algorithms have higher average a priori efficiency than the p-cycles

generated by SLA, which lead to better performance when used by CIDA. On the other hand,

the three algorithms generate more candidate p-cycles than SLA does: while SLA generates

only O(m) p-cycles, SP-Add and Expand generate O(m2) p-cycles and Grow generates O(m2n)

p-cycles where m and n are the number of spans and nodes in the network respectively.

For both the ILP approach and the heuristic approach, the quality of the solution depends

on the candidate p-cycle set used. A good candidate p-cycle set should contain a small number

of candidate p-cycles while give good performance (i.e., produce near optimal solutions) when

used by ILP or the heuristic algorithm. Among existing candidate p-cycle generation algo-

rithms, SLA generates the least number of p-cycles (O(m)). However, the candidate p-cycles

www.manaraa.com

54

generated by SLA do not bring good performance since they usually contain no more than

one straddling span and thus have low a priori efficiency [34]. In this chapter, we propose a

new algorithm that generates O(m) candidate p-cycles with good performance. Unlike existing

algorithms that generate a fixed number of candidate p-cycles, the new algorithm can control

the number of candidate p-cycles generated by adjusting an input parameter, which in term

affect the performance of the generated candidate p-cycles.

This chapter is organized as follows. In section 7.2, we describe the new cycle generation

algorithm. We study the performance of the algorithm in section 7.3. A conclusion is given in

section 7.4.

7.2 The Candidate Cycle Generation Algorithm

7.2.1 Design Considerations

Our candidate cycle generation algorithm is designed based on three considerations.

1) In order for the network to survive any single span failure, the candidate cycles must

be able to protect all spans in the network. That is, each span must be an on-cycle span or a

straddling span of some candidate cycle.

2) Since we would like to minimize the spare capacity required for protecting a given working

capacity distribution, the candidate cycle set should contain cycles with high efficiency. (In

the rest of the chapter, efficiency means a priori efficiency.)

3) Short candidate cycles are needed in order to achieve good performance. The reason is

the following. After we apply some high efficiency p-cycles to protect the working capacities,

we may be left with only a few spans with unprotected working capacities. In this case, a

p-cycle with high efficiency would be a bad choice since many of the on-cycle spans and/or

straddling spans on this cycle would have no working capacity left unprotected so that the

potential benefits of them would be wasted. Take the example in Figure 6.1, suppose after

applying a number of high efficiency p-cycles to protect the working capacities only two units

of working capacities are left unprotected, one on span b − f and one on span a − f . Now

it is not efficient to use the p-cycle a − b − c − d − f − a to protect the unprotected working

www.manaraa.com

55

capacities although it has high efficiency because it will use five units of spare capacity just

for protecting two units of working capacity. In this case, the short p-cycle a − b − f (with

an efficiency of 1) is the best choice since it can protect two units of working capacity with

only three units of spare capacity. This example shows that it is not always desirable to use

high efficiency p-cycles to protect the working capacities. In general, when most of the spans

contain unprotected working capacities, p-cycles with high efficiency are preferred since the

benefit of the on-cycle and straddling spans can be well utilized; when the unprotected working

capacity of most spans have dropped to 0, short p-cycles are preferred since they can reduce the

unprotected working capacities with low spare capacity consumption. Thus, a good candidate

cycle set should contain both high efficiency cycles and short cycles.

Based on the above considerations, our algorithm is designed to generate a combination

of high efficiency cycles and short cycles so that every span in the network is protected by at

least one high efficiency cycle and one short cycle. The algorithm consists of two steps: in the

first step, it generates a set of high efficiency cycles and in the second step, it computes a set

of short cycles.

7.2.2 Notations

Before describing the two steps in detail, we first introduce some notations. A network is

modeled as an undirected graph G = (V, E) where each vertex v ∈ V represents a network

node and each undirected edge e ∈ E represents a network span. An undirected edge consists

of two directed edges. We use unordered pair (u, v) to represent an undirected edge between

u and v and ordered pair 〈u, v〉 to represent a directed edge from u to v. Thus an undirected

edge (u, v) consists of two directed edges 〈u, v〉 and 〈v, u〉. The set of neighbors of a vertex v is

denoted as N(v), i.e., N(v) = {u|(u, v) ∈ E}. A DFS path from s to v, written as s −→ v, is

the path from s to v taken by a Depth First Search (DFS) traversal starting from s. We assign

weights to the directed edges in the graph before conducting a DFS search and the weight of

a directed edge 〈u, v〉 is denoted as weight(u, v).

www.manaraa.com

56

7.2.3 Step One: Generating High Efficiency Cycles

The key component of step one is the Weighted DFS-Based Cycle Search algorithm im-

plemented as a procedure WDCS(s, v, k). The procedure finds k cycles starting from s as

the root and traversing the DFS path s −→ v if k is smaller than the total number of cycles

traversing the DFS path s −→ v, otherwise the procedure will find all cycles traversing the

DFS path s −→ v. WDCS is based on Johnson’s cycle enumeration algorithm [40], which uses

DFS to generate all cycles in a graph. A procedure Cycle(s, v) based on Johnson’s algorithm

was provided by Grover in [41], which finds all cycles starting from s as the root and traversing

the DFS path s −→ v. The key difference between our procedure WDCS(s, v, k) and the pro-

cedure Cycle(s, v) is that in WDCS the order of cycle search is controlled by assigning weights

to the directed edges so that high efficiency cycles are likely to be found early in the search.

In addition, the number of cycles generated by WDCS is controlled by the input parameter

k. As a special case, when k = ∞, the procedure will find all cycles traversing the DFS path

s −→ v.

The pseudocode of WDCS is given below.

bool WDCS(s, v, k)

1. bool flag := false;

2. avail(v) := false;

3. time stamp(v) := counter; counter++;

4. while (number cycles found < k)

5. find w ∈ N(v) such that avail(w) = true and

weight(v, w) = maxu weight(v, u);

6. if (such w exists) then

7. if (w = s) then // a cycle is found

8. cycle := stack contents followed by s;

9. output cycle;

10. flag := true;

11. number cycles found++;

www.manaraa.com

57

12. else // extend the searching path

13. push w onto the stack;

14. flag := flag OR WDCS(s, w, k);

15. else // the searching path hits a dead end

16. break;

17. if (number cycles found < k) then

18. if (flag = true) then

19. Unmark(v)

20. else

21. for each x ∈ N(v) do

22. if (time stamp(x) < time stamp(v)) then

// x is a DFS ancestor of v

23. B(x) := B(x) ∪{v}

24. pop v from the stack;

25. return flag;

void Unmark(u)

1. avail(u) := true;

2. for each t ∈ B(u) do

3. Unmark(t);

4. B(u) := ∅

Before WDCS(s, v, k) is called by another procedure, the following procedure is used to

initialize the necessary data structures and variables.

void init(s, v)

1. empty the stack;

2. push s onto the stack;

www.manaraa.com

58

3. push v onto the stack;

4. counter := 0; number cycles found := 0;

5. for each u ∈ V do

6. avail(u) := true;

7. B(u) := ∅;

8. time stamp(u) = ∞;

The basic cycle search strategy used by WDCS is the following. The DFS starts from the

root s. First, v is included into the DFS path. Whenever a vertex is added to the DFS path,

it is marked unavailable and pushed onto the stack that contains the current DFS path. We

keep extending the DFS path until the root s is reached, which means that a cycle is found, or,

there is no available vertex to extend the path, which means that a cycle can’t be found. Then

we back up one vertex by popping the top vertex off the stack and go for another search from

the vertex preceding the popped vertex. If the previous search succeeded in finding a cycle,

the popped vertex as well as its marked DFS descendants should be unmarked as available

for exploring new cycles; if the previous search failed to find a cycle, the popped vertex as

well as its DFS descendants should stay unavailable to avoid future search running into the

unsuccessful path again. For more details about the DFS-based cycle search algorithm, please

refer to [40] and [41].

We now describe the new features we added to the basic DFS-based cycle search algorithm.

In the basic algorithm, when extending the search path from a node v, the neighbors of v are

explored in arbitrary order. Thus there is no control over the order of the cycles generated.

In WDCS, we added some intelligence into the DFS search so that cycles with high efficiency

are likely to appear early in the DFS search. As shown in line 5 of WDCS(s, v, k), instead

of picking any available neighbor of v to extend the searching path, we choose an available

neighbor w such that 〈v, w〉 has the highest weight among all outgoing edges incident to v.

This makes it possible for us to have control over the order by which vertices are included

into the search path (hence the order by which cycles are found) by properly setting the edge

www.manaraa.com

59

weights. The following three rules are used to set the weights of the directed edges.

1) Since long cycles tend to include more straddling spans and therefore result in high

efficiency, we would like to avoid going back to the root vertex during the DFS search whenever

possible. This is achieved by assigning a small weight to the directed edges that end at the

root, i.e. we set weight(u, s) = ǫ for all u ∈ N(s) where 0 < ǫ < 1 and s is the root.

2) When choosing an available vertex among the neighbors of the current searching path

endpoint, we would like to pick the neighbor with the highest degree. The reason is that if

this high degree vertex is included into the searching path that results in a cycle, the cycle

will have high probability of including more straddling edges. This strategy can be achieved

by setting the weight of 〈u, v〉 as the degree of v for all 〈u, v〉 where v 6= s.

3) According to rule 2, 2-degree vertices are not desirable because they do not introduce

straddling edges directly into a cycle and they will not be selected to extend a searching path

whenever another higher degree vertex is available. However, we note that 2-degree vertices

are actually desirable in some cases. Consider the graph shown in Figure 7.1. According to rule

1 and rule 2, the edge weights would be set as shown in Figure 7.1 (a) (ǫ = 0.9) and the cycle

found by WDCS(r, v1, 1) would be r − v1 − v2 − r with an efficiency of 1. However, the cycle

r−v1−v−v2−r has a higher efficiency of 1.5, which is better than the cycle r−v1−v2−r. In

order for the DFS search to discover the higher efficiency cycle first, we need special treatment

for the 2-degree vertex v. We observe that when v is included into the searching path from

v1, the only way for the search to continue is to extend the path to v2 from v. So when the

current searching path endpoint is v1, whether the 2-degree vertex v is a desirable vertex to be

included in the path depends on the desirability (i.e., degree) of v2 since the path v1−v−v2 can

be viewed as a single edge 〈v1, v2〉. Thus we set weight(v1, v) = degree(v2). Now both 〈v1, v〉

and 〈v1, v2〉 have a weight of 3. To break the tie, we give higher priority to 〈v1, v〉 by adding

a small ǫ′(0 < ǫ′ < 1) to its weight. With this special treatment of the 2-degree vertex, the

weights of the edges are shown in Figure 7.1 (b). In this case, v would be chosen over v2 when

extending the searching path from v1. Thus, the higher efficiency cycle r−v1−v−v2−r would

be found by WDCS(r, v1, 1). The special treatment of 2-degree vertex can be generalized to

www.manaraa.com

60

handle 2-degree chains. We call a path from u to w a 2-degree chain if both u and w have

degree greater than 2 and all the other intermediate vertices on the path have degree 2. Such

a path can be regarded as one edge from u to w by ignoring all the intermediate 2-degree

vertices, so we set the weight of all edges on the path to be the degree of w and for the first

edge on the path an extra ǫ′ is added to its weight. Note that when we include a 2-degree chain

into a cycle, we may introduce one more straddling edge into the cycle while at the same time

increase the cycle length and therefore the cycle cost. As a result, the efficiency of the cycle

may or may not be improved. However, we observe that real world transport networks usually

only contain short 2-degree chains (i.e., only one or two 2-degree vertices are on the chain), so

the benefit of introducing one more straddling edge generally outweighs the negative effect of

increased cycle length.

v

v1 v2

r

3

2 3

0.9 3

3 2

3

0.
93

v

v1 v2

r

3

3+
0.

05

3

0.9 3

3

3+0.05

3

0.
93

root root

(a) (b)

Figure 7.1 Illustration of the special handling of the degree 2 vertex. Num-
bers above the dotted lines are weights. Here we let ǫ = 0.9 and
ǫ′ = 0.05. (a) Without special handling of 2-degree vertex. (b)
With special handling of 2-degree vertex.

The following is the pseudo-code of the procedure Set Weights, which sets the edge weights

based on the three rules.

void Set Weights(s) //s is the root of DFS cycle search

1. for each 〈u, v〉 ∈ E do

2. if (v 6= s) then

3. weight(u, v) := degree(v)

www.manaraa.com

61

4. else

5. weight(u, v) := ǫ (0 < ǫ < 1)

6. for each 2-degree chain in G do

7. set the weight of all edges on the chain to the degree

of the last vertex on the chain

8. add ǫ′ to the weight of the first edge on the chain;

To generate a set of high efficiency cycles that can protect every edge in the graph, we

define a procedure Efficient Cycles(k) that calls WDCS 2|E| times to generate 2k|E| cycles

in total. Specifically, WDCS is called for every vertex u ∈ V and every neighbor v of u to

generate k cycles. Thus, every directed edge 〈u, v〉 is used once to start the search for k cycles

and exactly 2k|E| cycles are generated. The pseudo-code of the procedure is given below.

void Efficient Cycles(k)

1. for each u ∈ V do

2. Set Weights(u);

3. for each v ∈ N(u) do

4. init(u, v);

5. WDCS(u, v, k);

Note that k is an input parameter for the procedure, which is a constant. So the number

of high efficiency cycles generated in this step is O(|E|). Also, the number of unique cycles

generated by the procedure may be smaller than 2k|E| because of the existence of duplicate

cycles.

7.2.4 Step Two: Generating Short Cycles

As discussed earlier in this section, short cycles are needed to deal with sparse working

capacity situation efficiently. To this end, we compute two short cycles for each edge in the

www.manaraa.com

62

graph, one has the edge as an on-cycle edge, the other has the edge as a straddling edge. For

each edge e, we compute the two short cycles as follows. We find the shortest path between

the endpoints of e in G − e and combine the path with e to create a cycle. Note that this

is the shortest cycle that can protect e and e is on-cycle. To generate a short cycle that has

e as a straddling edge, we first find the shortest path P1 between the two endpoints of e in

G − e. We then tries to find the shortest path P2 between the two endpoints of e in G − e

that is node-disjoint with P1. If P2 can be found, then it is combined with P1 to form a cycle.

Otherwise, no cycle exists that has e as a straddling edge. Clearly, for each edge in G, the

algorithm generates exactly one short cycle with the edge being on-cycle and at most one short

cycle with the edge being straddling, so the total number of short cycles generated in this step

is at most 2|E|.

Since both step 1 and step 2 generate O(|E|) cycles, a total of O(|E|) cycles are generated

by our cycle generation algorithm.

7.3 Numerical Results

We used two test networks shown in Figure 7.2 to evaluate the performance of our cycle

generation algorithm. Network1 is a 11-node 23-span network taken from the website of [41]

and Network2 is a 28-node 45-span network taken from [34].

(a). 11-node, 23-span (b). 28-node, 45-span

Figure 7.2 Two test networks: (a) Network1; (b) Network2.

www.manaraa.com

63

For each test network, two groups of demand sets are used. One is the uniform demand set

that contains one demand for each unordered source-destination pair; the other is 10 random

demand sets of which each random demand set contains 150 demands (for Network1) and 1000

demands (for Network2) respectively. In all demand sets, each demand requests for one unit

of capacity. For each combination of a test network and a demand set, working capacities on

the network spans are obtained by routing each demand over the shortest path.

7.3.1 Spare Capacity Efficiency When k = 1

We first evaluate the performance of our cycle generation algorithm with k set to 1 so that

the least number of candidate cycles are generated. After the candidate cycles are generated,

we feed them to the heuristic algorithm CIDA provided in [34] and the ILP formulation given in

[41] to compute a set of p-cycles to protect the working capacities and record the spare capacity

required. To obtain the minimal spare capacity required by the optimal p-cycle configuration,

we also run the ILP with all cycles in the network supplied to it. The results for the two test

networks are shown in Table 7.1 and Table 7.2. In these tables, “CIDA on CAND” means

CIDA with candidate cycles generated by our algorithm, “ILP on CAND” means ILP with

candidate cycles generated by our algorithm, and “ILP on ALL” means ILP with all cycles in

the network, which gives the optimal solution. For each of these three cases, the number of

candidate cycles and the percentage difference from the optimal spare capacity are shown.

Table 7.1 Comparison of spare capacity efficiency for Network1

Uniform demands 150 random demands
CIDA ILP ILP CIDA ILP ILP

on on on on on on
CAND CAND ALL CAND CAND ALL

Candidate 49 49 307 49 49 307
Cycles
%Diff 16.3% 12.8% 0% 15.3% 13.8% 0%

Note that in Table 7.1 and 7.2 (as well as in the next section), the percentage difference for

random demands is the average percentage difference of the corresponding group of 10 random

demand sets.

www.manaraa.com

64

Table 7.2 Comparison of spare capacity efficiency for Network2

Uniform demands 1000 random demands
CIDA ILP ILP CIDA ILP ILP

on on on on on on
CAND CAND ALL CAND CAND ALL

Candidate 92 92 7321 92 92 7321
Cycles
%Diff 21.9% 17.0% 0% 21.8% 17.4% 0%

The quality of the candidate cycles generated by our algorithm can be judged by %Diff

of ILP on CAND. For Network1, the %Diff is 12.8% and 13.8% for uniform demands and

random demands respectively. This is quite promising because only 49 out of the 307 cycles

in the network are used as candidate cycles. For Network2, the %Diff is 17.0% and 17.4% for

uniform demands and random demands respectively. Here only 92 out of the 7321 cycles in

the network are used as candidate cycles. These results show that our algorithm can generate

a small number of candidate cycles with good performance when k is set to 1.

7.3.2 Effect of k on Spare Capacity Efficiency

Figure 7.3 shows how %Diff of ILP on CAND changes as we change the value of k and

Figure 7.4 shows how the number of candidate cycles generated by our algorithm grows as k

is increased. As can be seen from the figures, as k increases, the number of candidate cycles

increases and %Diff decreases. This is expected because increasing k value will make more

candidate cycles to be generated, which in turn leads to better ILP solution. For Network1,

when k is increased to 5, the number of candidate cycles is 130 (42.3% of all cycles), the spare

capacity used is optimal for the uniform demand set and within 0.8% from the optimal for

random demand sets. For Network2, in order to get a solution within 1% from optimal, a much

larger k is needed: when k is increased to 43 (not shown in Figure 7.3 and Figure 7.4), the

number of candidate cycles is 1714 (23.4% of all cycles), and the spare capacity used is within

0.7% and 0.6% from optimal for the uniform demand set and random demand set respectively.

These results show that with our algorithm, almost optimal spare capacity consumption can

be achieved with much less candidate cycles than all cycles in the network. In addition, by

www.manaraa.com

65

adjusting the k value, we can obtain a tradeoff between the number of candidate cycles and

the spare capacity efficiency of the p-cycle network design.

0

5

10

15

20

0 1 2 3 4 5 6

%
D

iff
 fr

om
 O

pt
im

al
 S

pa
re

 C
ap

ac
iti

es

k

Network1 Uniform
Network1 150 Random

Network2 Uniform
Network2 1000 Random

Figure 7.3 Effect of k on Spare Capacity Efficiency of ILP on CAND.

7.3.3 Efficiency of Cycles Found in Step 1 (k = 1)

Step 1 of our cycle generation algorithm is designed to find cycles with high efficiency. To

check how well this objective is achieved, we compare the highest efficiency and the average

efficiency of the cycles generated in Step 1 with the best efficiency of all cycles in the network.

For Network1, the highest/average efficiency of cycles found in Step 1 is 3.0/2.18 while the

best efficiency of all cycles is 3.29. For Network2, the highest/average efficiency of the cycles

found in Step 1 is 2.07/1.58 while the best efficiency of all cycles is 2.22. These results show

that the highest efficiency of the cycles found in Step 1 is close to the best efficiency of all

cycles in the network. Therefore, our algorithm is effective in finding high efficiency cycles.

7.4 Conclusion

We proposed a cycle generation algorithm that can find good candidate cycles for use by

ILP or a heuristic algorithm to find the optimal p-cycles to protect a given working capacity

www.manaraa.com

66

50

100

150

200

250

0 1 2 3 4 5 6

N
um

be
r

of
 C

an
di

da
te

 C
yc

le
s

k

Network1
Network2

Figure 7.4 Effect of k on the Number of Candidate Cycles.

distribution. The algorithm consists of two steps, which generates O(|E|) high efficiency cycles

and O(|E|) short cycles respectively. The key component in step 1 is the Weighted DFS-

based Cycle Search (WDCS) algorithm that can generate high efficiency cycles early in the

DFS search by properly setting the edge weights in the graph and always using the edge with

the highest weight to extend the searching path. The problem of sparse working capacity

distribution is addressed in step 2 by including short cycles into the candidate cycle set. Test

results show that the candidate cycles generated by our algorithm lead to good spare capacity

efficiency when used by ILP and the heuristic algorithm CIDA. In addition, by tuning the

input parameter k, our algorithm provides tradeoff between the number of candidate cycles

and the performance of the candidate cycles.

www.manaraa.com

67

CHAPTER 8. P-CYCLE DESIGN ON WDM NETWORK WITH

SRLG’S

A shared risk link group (SRLG) is a set of links that share a common resource whose

failure will cause the failure of all links in it [42]. For instance, multiple fiber links laid out in

a common conduit in WDM networks can be viewed as an SRLG because the conduit cut will

result in the failure of all fibers in it. In general, a network contains a set of SRLGs that can be

pre-determined according to the resource sharing relationship. An example SRLG set for the

network in Figure 6.1 may be {{ab}, {ac, ae, af}, {ac, bc, ef}, {cd, df}, {bf, cf, de, ef}}. If the

SRLG {ac, bc, ef} fails, the links ac, bc, and ef all fail. A well-studied path-based protection

scheme for the single-SRLG failure model is SRLG-diverse routing, which finds a pair of SRLG-

disjoint paths (primary path and backup path) between the source and destination nodes of

a connection. SRLG-disjoint means that no single SRLG failure will break both the primary

and the backup paths simultaneously. The NP-completeness proof of the SRLG-diverse routing

problem as well as an ILP solution are given in [43][44]. Heuristic approaches to this problem

are proposed in [45][46]. Some recent works [47][48][49] explored p-cycle design for dual link

failures. In this chapter, we will discuss a new protection strategy for the single-SRLG failure

model, that is, to apply p-cycle network design on networks with SRLGs.

This chapter is organized as follows. In Section 8.1, we study the protection a p-cycle can

offer upon an SRLG failure. In Section 8.2, we describe the p-cycle design problem and give an

ILP formulation that solves it optimally. In Section 8.3, we provide an algorithm for generating

a subset of all cycles that can protect any single SRLG failure. In Section 8.4, we introduce the

concept of SRLG-independent restorability to address the SRLG failure detection issue that

affects fast restoration. In Section 8.5, we present some simulation results on two networks

www.manaraa.com

68

with randomly generated SRLG sets. Finally, a conclusion is given in Section 8.6.

8.1 p-Cycle Protection upon an SRLG Failure

In the single link failure model, the protection that can be provided by a p-cycle for a link

depends on their relationship. Specifically, if the link is on-cycle, then the p-cycle can offer one

restoration path in case the link fails; if the link straddles the p-cycle, then two restoration

paths are provided by the p-cycle when the link is broken; otherwise the p-cycle cannot protect

the link. Upon an SRLG failure, all links in the SRLG are gone. To restore such a failure,

every failed link must be taken care of by some p-cycles. Meanwhile, since multiple links may

fail in case of an SRLG failure, if two or more failed links happen to be on the same p-cycle,

then the p-cycle is broken, which makes the situation more complicated than in the single link

failure model. Figure 8.1 illustrates the possible relationships between an SRLG failure and a

p-cycle. Part (a) shows the case where the p-cycle remains a cycle after the SRLG failure. Two

restoration paths can be provided for links s − t, u − v, and t − x respectively given enough

copies of the p-cycle. However, no restoration path can be provided for link x − y since y is

not on the p-cycle. In part (b), the p-cycle is broken into a path from s to t after the SRLG

failure. One restoration path can be provided for links s− t, u−v, and t−x respectively given

enough copies of the p-cycle. The p-cycle provides no restoration path for link y − z because

y and z are not on the p-cycle. In part (c), the p-cycle is broken into two segments s · · ·u and

v · · · t. No restoration path is available for links s − t, u − v, and x − z since their two end

nodes are on different segments. However, the p-cycle can supply one restoration path for link

x − y since both x and y are on the segment v · · · t. To compute the protection a p-cycle can

provide for a link upon an SRLG failure, we define a function called CYCLE LINK SRLG.

CYCLE LINK SRLG takes a cycle i, a link j, and an SRLG k as inputs, and returns the

number of restoration paths that can be provided for link j by cycle i in case of the failure of

SRLG k. The pseudo-code of function CYCLE LINK SRLG is given below.

int CYCLE LINK SRLG(cycle i, link j, SRLG k)

1. if j 6∈ k then

www.manaraa.com

69

(a). An SRLG failure does not
break a p-cycle.

(b). An SRLG failure
breaks a p-cycle into a path.

(c). An SRLG failure breaks
a p-cycle into segments.

X

X

XXX

X

X

X

X

X

X

X

s

t

u

v

x

y

s

t
u

vx

y z

s

t

u v
x

y

z

Figure 8.1 Relationship between an SRLG failure and a p-cycle (Solid
lines are links in the failed SRLG. Dashed-line ellipses repre-
sent p-cycles.)

2. return 0; // The link does not belong to the SRLG and

therefore does not fail.

3. if link j’s end nodes are not both on cycle i then

4. return 0; // The link cannot be protected by the cycle.

5. Remove links in SRLG k from cycle i.

6. if cycle i remains a cycle then

7. return 2;

8. else // Cycle i is broken into one or more segments.

9. if link j’s end nodes are on the same segment then

10. return 1;

11. else

12. return 0;

8.2 An ILP for Optimal p-Cycle Design

8.2.1 Problem Description

We consider the following p-Cycle design problem: given a network represented by a graph

G = (V, L), a set of SRLGs in G, a set of distinct candidate p-cycles in G, and the working

capacity on each link in G, compute a set of p-cycles that minimizes the total cost of spare

www.manaraa.com

70

capacity required to achieve 100% restoration in case of a single SRLG failure.

To guarantee the existence of a solution to this problem, the following conditions are

assumed:

• The network is two-edge-connected so that each link can be protected by at least one

cycle.

• The failure of any single SRLG does not disconnect the network.

• In case of any single SRLG failure, for each link in this SRLG, at least one cycle exists

in the candidate p-cycle set such that the cycle can provide at least one restoration path

for it.

• There is enough capacity on each link in the network.

8.2.2 ILP Formulation

Sets: (input)

L: The set of all links.

P : The set of candidate p-cycles.

R: The set of SRLGs.

Parameters: (input or pre-computed)

wj : The working capacity on link j.

cj : The cost of one unit of spare capacity on link j.

pij : 1 if link j is on cycle i, 0 otherwise.

bjk: 1 if link j is in SRLG k, 0 otherwise.

xijk: The number of restoration paths for link j that can be provided by cycle i in case

SRLG k fails. This value can take 0, 1, or 2, which is pre-computed by the function CY-

CLE LINK SRLG(i, j, k).

www.manaraa.com

71

Variables: (to be determined)

sj : The spare capacity on link j.

ni: The number of copies of cycle i needed in the p-cycle design.

nik: The number of copies of cycle i needed in case SRLG k fails.

nijk: The number of copies of cycle i needed for link j in case SRLG k fails.

Minimize
∑

j∈L

cj · sj

Subject to:

sj =
∑

i∈P

pij · ni ∀j ∈ L (8.1)

bjk · wj ≤
∑

i∈P

xijk · nijk ∀j ∈ L, ∀k ∈ R (8.2)

nik =
∑

j∈L

bjk · nijk ∀i ∈ P, ∀k ∈ R (8.3)

ni ≥ nik ∀i ∈ P, ∀k ∈ R (8.4)

Constraints in (8.1) reflect the relationship between the spare capacities and the result

p-cycle design. Specifically, the spare capacity on link j will be the total number of p-cycles

that traverse it. Constraints in (8.2) guarantee that if link j is in SRLG k (i.e., bjk = 1), its

working capacity is protected in case SRLG k fails. And if link j is not affected by SRLG

k’s failure (i.e., bjk = 0), this constraint can be ignored since the left hand side is 0. This

enforces that when an SRLG fails, only the links that belong to it need to have their working

capacities restored by p-cycles. Constraints in (8.3) ensure that when SRLG k fails, all links

in k should be restored. So the number of copies of cycle i needed for SRLG k’s failure is

the sum of the number of copies of cycle i needed for all links in SRLG k. Constraint (8.4)

is equivalent to ni = maxk∈R nik. This equation reflects the fact that under the single SRLG

failure assumption, the number of copies of cycle i needed is dominated by the maximum

requirement over all single SRLG failures.

This ILP will be referred to as ILP1 in the rest of this chapter.

www.manaraa.com

72

8.3 Generation of Candidate Cycles

As in the single link failure model, the set of candidate p-cycles must contain all cycles

in the network in order for the ILP to obtain the optimal p-cycle design. This requirement

blows up the complexity of the p-cycle design since the number of cycles in a network grows

exponentially with the network size. To overcome this difficulty, we give an algorithm for

generating a small subset of all cycles as the candidate p-cycle set such that a p-cycle design

can be found to fully survive any single SRLG failure in the network given enough spare

capacities. The algorithm works as follows. For each SRLG, first remove all links in it from

the network graph. Then for each pair of end nodes of a removed link, find its shortest path

as well as two node-disjoint shortest paths (if exist) in the remaining graph. The shortest path

is combined with the removed link to form a cycle that contains the removed link as on-cycle

link, and the two node-disjoint shortest paths (if exist) are combined to form a cycle on which

the removed link straddles. The distinct cycles generated are collected into the candidate

p-cycle set. FIND BASIC CYCLES is a function implementing the above algorithm and the

pseudocode of it is given below.

FIND BASIC CYCLES(network G, SRLG set R)

1. P = ∅;

2. for each SRLG k ∈ R do

3. let G′ = (V, L − k);

4. for each link l = (u, v) ∈ k do

5. Compute the shortest path between u and v in G′.

6. let c = the cycle formed by the shortest path and l;

7. let P = P ∪ {c};

8. Compute two node-disjoint shortest paths

between u and v in G′.

9. if such a pair of node-disjoint paths exist then

10. let c be the cycle formed by the two paths;

www.manaraa.com

73

11. let P = P ∪ {c};

12. return P ;

Given a two-edge-connected network and an SRLG set such that any single SRLG failure

does not disconnect the network, the algorithm can always find a candidate p-cycle set that can

provide 100% restorability in case of any single SRLG failure given enough spare capacities.

The reason is that in case of any SRLG failure, for each affected link, it is always possible

to find a shortest path between the two end nodes of the link because the network is still

connected. This guarantees that when an SRLG fails, each link in the SRLG has at least one

cycle that can provide a restoration path for it.

For each link j ∈ L, suppose tj is the number of SRLGs that contains j. Let t = maxj∈L tj .

Then the number of distinct cycles generated by FIND BASIC CYCLES is O(tm) where m is

the number of links in the network.

8.4 SRLG-Independent Restorability

8.4.1 Impact of SRLG Failure Detection Problem on Restoration Speed

An important feature of p-cycle survivable network design with the single link failure model

is fast restoration. When a link fails, its end nodes can detect the failure immediately and

start restoration right away using the pre-configured p-cycles. But the single SRLG failure

model changes the situation. Upon an SRLG failure, for each failed link, although its end

nodes can detect the link failure immediately as in the single link failure model, they may not

be able to start restoration at that moment. The reason is that in order to figure out which

pre-configured p-cycles should be used to restore the link, the end nodes of the link need to

know which SRLG has failed. Unless this can be inferred directly from the knowledge of the

SRLG set, a signaling protocol is needed to enable all involved nodes to find out which SRLG

has failed. For example, in Figure 8.2, when SRLG g1 = {ab, ac} fails, node c can detect the

failure of link ac instantly; however, since ac also belongs to another SRLG g2, c cannot tell

www.manaraa.com

74

a

b

c d

e

g1={ab, ac}

g
2
={ac, ad}

X

X

g
1
 failure or

g
2
 failure?

Figure 8.2 SRLG Failure Detection Problem

whether the failed SRLG is g1 or g2 until it gets more failure information from the network.

8.4.2 A Solution with SRLG-Independent Restorability

When an SRLG failure happens, for each affected link, we want its end nodes to start the

restoration of the failed link before they find out which SRLG is down. To achieve this, we

introduce the concept of SRLG-independent restorability. The idea can be illustrated by Figure

8.3 in which we try to restore the traffic on link a− c right after node a and c detect the failure

of link a − c. Note that at this moment, node c does not know whether the failed SRLG is g1

or g2. Consider two p-cycles, c1 = a−b−c−d−e−a and c2 = a−b−c−a. It can be seen that

c1 can provide the failed link a− c with either one restoration path (a− e− d− c) if g1 fails or

two restoration paths (a− b− c and a− e− d − c) if g2 fails. To accommodate the worst case

scenario, we consider that c1 can provide only one restoration path for link a − c and can be

used to restore traffic on link a − c regardless whether g1 or g2 has failed. On the other hand,

although c2 can be used to restore link a − c in case of g2 failure, it cannot be used to restore

link a − c in case of g1 failure. Therefore, we cannot use c2 to restore link a − c immediately

after a and c detect the link failure. We say that link a − c is SRLG-independently restorable

by cycle c1 but not by cycle c2, i.e., c1 can be used to restore link a− c no matter which SRLG

that contains a − c has failed.

www.manaraa.com

75

a

b

c d

e

g1={ab, ac}

g
2
={ac, ad}

X

?

?

c
1
=a-b-c-d-e-a

c 2
=

a
-b

-c
-a

Figure 8.3 SRLG Failure Detection Problem

For convenience, the SRLG-independent restorability for a given a network G = (V, L) with

respect to an SRLG set R is referred to as R-independent restorability. The formal definition

of R-independent restorability is given as follows.

Definition R-independent restorability parameter x′
ij is the number of restoration paths for

link j that can be provided by cycle i in case of a failure of any SRLG k ∈ R that contains

j. And x′
ij = mink∈Rj

xijk where Rj = {g ∈ R : j ∈ g} and xijk is computed by the

CYCLE LINK SRLG function defined in Section 8.1.

Definition Link j ∈ L is R-independently restorable by cycle i if x′
ij > 0. And link j ∈ L is R-

independently restorable if there exists a cycle i in G such that j is R-independently restorable

by i. Moreover, network G is R-independently restorable if all links in G are R-independently

restorable.

To compute an optimal p-cycle design with SRLG-independent restorability, constraint

(8.2) of ILP1 needs to be revised as follows.

bjk · wj ≤
∑

i∈P

x′
ij · nijk ∀j ∈ L, ∀k ∈ R (8.2’)

The new ILP is referred to as ILP2. Note that ILP2 may not be able to find a solution

www.manaraa.com

76

for a problem instance for which ILP1 can find a solution because some link(s) in G may not

be SRLG-independently restorable. To obtain the optimal p-cycle design with the presence

of non-SRLG-independently restorable links, we can apply constraint (8.2’) for those links

that are SRLG-independently restorable and apply constraint (8.2) for those links that are

not SRLG-independently restorable. Upon an SRLG failure, the affected SRLG-independently

restorable links can be restored immediately; however, the non-SRLG-independently restorable

links involved cannot be restored until the end nodes of the failed links use a signaling protocol

to find out which SRLG actually failed.

8.4.3 Hardness of Generating Candidate Cycles with SRLG-Independent Restora-

bility

In Section 8.3, we give a polynomial time algorithm to generate a small candidate p-cycle set

to guarantee 100% restorability so that the enumeration of all cycles is avoided. The algorithm

guarantees that when an SRLG fails, each link in the SRLG has at least one candidate cycle

that can provide a restoration path for it. A natural question to ask is whether a similar

approach can be taken with regard to SRLG-independent restorability, that is, whether it is

possible to find in polynomial time a small subset of all cycles as the candidate p-cycle set such

that when an SRLG fails, each link in the SRLG is R-independently restorable by at least one

candidate cycle.

In this section, we show that it is NP-hard to find a cycle for a given link such that the

link is SRLG-independently restorable by the cycle.

We start with the well-studied SRLG-diverse routing problem, which can be described as

follows. For a network G = (V, L) and an SRLG set R, between a given pair of nodes u, v ∈ V ,

find two paths p1 and p2 such that no SRLG failure breaks both paths simultaneously, i.e.,

∀g ∈ R, E(p1) ∩ g = ∅ ∨ E(p2) ∩ g = ∅ must hold where E(p1)/E(p2) denotes the link set of

path p1/p2.

On the other hand, for any link j ∈ L with end nodes u and v, a cycle i that could

potentially protect j must contain both u and v. So cycle i can be viewed as two node disjoint

www.manaraa.com

77

paths between u and v. Without loss of generality, we call these two paths p1 and p2. We have

the following alternative definition for SRLG-independent restorability.

Definition Link j = u − v ∈ L is R-independently restorable by cycle i in G if and only if

u, v ∈ V (i) and ∀k ∈ Rj , E(p1) ∩ k = ∅ ∨ E(p2) ∩ k = ∅ where V (i) = {all nodes on cycle i}

and Rj = {g ∈ R : j ∈ g}.

It can be seen that to generate a cycle that can SRLG-independently restore a link is

essentially to find two node disjoint SRLG-diverse paths between the end nodes of the link.

Here we need two paths to be node disjoint to guarantee they form a cycle. With a simple

modification to the NP-hardness proof for the SRLG-diverse routing problem provided in [44],

we can prove that it is NP-hard to generate a cycle that can SRLG-independently restore

a given link by reduction from the 3-SAT problem. For the complete proof, please refer to

the Appendix of this chapter. Because of this result, no effort should be spent on finding a

polynomial time candidate cycle generation algorithm for a given network and its SRLG set

with SRLG-independent restorability consideration.

8.5 Numerical Results

8.5.1 Settings

Two networks shown in Figure 8.4 are used for simulations. Network 1 is an 11-node 23-

link network taken from the website of [41] and Network 2 is a 15-node 28-link Metropolitan

network.

For each network, two demand sets are used. One is the uniform demand set that contains

one demand for each unordered source-destination pair. The other is a set that contains 150

random demands for Network 1 and 300 random demands for Network 2, respectively. In all

demand sets, each demand requests for one unit of capacity. For each combination of a test

network and a demand set, working capacities on the network links are obtained by routing

each demand over the shortest path. The cost of each unit of spare capacity on a link is set to

one, i.e., cj = 1 for all j ∈ L.

In practice, SRLG sets are known a priori. In our simulations, they are randomly generated.

www.manaraa.com

78

(a). 11-node, 23-span (b). 15-node, 28-span

Figure 8.4 Test networks.

To facilitate this, we define the term “r-SRLG set” where r is a positive integer. An r-SRLG

set has the property that each SRLG in the set contains at most r links. For each network, we

randomly generate r-SRLG sets (2 ≤ r ≤ 4) conforming to the following rules for each SRLG

set:

• Any single SRLG failure does not disconnect the network. This is necessary to guarantee

a feasible p-cycle design.

• Each link in the network belongs to at least one SRLG. That is, there is no risk-free link

in the network.

• Each SRLG is not a subset of another SRLG. Note that as long as an SRLG failure is

restorable, a failure of any subset of it is also restorable without requiring more spare

capacities.

Note that a network with single link failure has a 1-SRLG set.

All simulations are run on a Sun Ultra 10 workstation equipped with a single 440 MHz

CPU, 256 MB RAM, and 4 GB virtual memory. CPLEX8.1 is used as the solver for ILP

formulations.

www.manaraa.com

79

Table 8.1 Optimal p-cycle design results
Network 1 Network 2

Uniform 150 random Uniform 300 random

candidate 307 307 976 976

cycles

Working 96 244 228 679

Capacity

Spare Capacity 86 214 136 400

(1-SRLG set)

Spare Capacity 122 302 260 763

(2-SRLG set)

Spare Capacity 133 315 354 1035

(3-SRLG set)

Spare Capacity 165 392 388 1174

(4-SRLG set)

8.5.2 p-Cycle Design without Considering SRLG-Independent Restorability

To compute the optimal p-cycle design, we solve ILP1 for both test networks and all cycles

are used as candidate p-cycles for ILP1. The number of candidate cycles, total working capacity

on all links, and total spare capacity required under different simulation settings are shown in

Table 8.1. It can be seen that when a SRLG set has larger SRLGs (i.e., larger r values), the

total spare capacity needed becomes larger since more working capacity is affected by a single

SRLG failure. On the other hand, this trend seems to be more dramatic for Network 2 than

for Network 1. This can be explained by the fact that the average working capacity per link in

Network 2 is higher than that in Network 1, so the amount of affected working capacity grows

faster in Network 2 than in Network 1 as the size of SRLGs in the SRLG set becomes larger.

To evaluate the effect of using the basic candidate cycle set generated by the algorithm

FIND BASIC CYCLES given in Section 8.3 as the candidate p-cycle set for ILP1, we compare

the spare capacity requirement and running time of ILP1 with all cycles and with the basic

candidate cycles in Tables 8.2 and 8.3. Table 8.2 shows the number of cycles generated for the

basic candidate cycle set, the total spare capacity required for ILP1 with all cycles, and the

total spare capacity required for ILP1 with the basic candidate cycles for various simulation

settings. For ILP1 with basic candidate cycles, we also list the percentage of extra spare

www.manaraa.com

80

Table 8.2 Spare capacity comparison between all cycles and basic cycles
(the percentages over the optimum are shown in basic cycles
entries)

Network 1 Network 2

r #cycles Uniform 150 random #cycles Uniform 300 random

BASIC ALL BASIC ALL BASIC BASIC ALL BASIC ALL BASIC

1 27 86 136 214 329 30 136 223 400 651

58% 54% 64% 63%

2 39 122 175 302 445 41 260 341 763 1008

43% 47% 31% 32%

3 33 133 188 315 444 42 354 433 1035 1269

41% 41% 22% 23%

4 38 165 251 392 588 49 388 466 1174 1404

52% 50% 20% 20%

capacity required over the optimal solution in the parentheses. Table 8.3 gives the running time

comparison between ILP1 with all cycles and ILP1 with basic candidate cycles. In algorithm

FIND BASIC CYCLES, we used a two-step algorithm to find two node-disjoint shortest paths

for a pair of nodes. That is, we find a shortest path first, then remove all intermediate nodes

along this path and try to find a shortest path in the remaining graph.

As shown in Table 8.2, the spare capacity obtained by ILP1 with basic candidate cycles

is always greater than the optimal value. This is expected because FIND BASIC CYCLES

generates a small subset of all cycles. We notice that for both test networks, the spare capacity

over usage with single link failure (1-SRLG set) is larger than with 2, 3, 4-SRLG sets. In other

words, the negative effect of using a small basic candidate cycle set on an r-SRLG set (r > 1)

is less than on the single link failure model. This can be explained by the following two facts.

Firstly, under the single link failure model, a link can always be protected by a cycle as long as

its end nodes are on the cycle; while for an r-SRLG (r > 1) set, we need an extra requirement

that the SRLG failure should not break the cycle. This makes the number of cycles that can

potentially protect a link become smaller for an r-SRLG set (r > 1) compared to 1-SRLG

set. Secondly, the simulation results show that FIND BASIC CYCLES generates more cycles

for 2, 3, 4-SRLG sets than for 1-SRLG sets. Hence, the loss of candidate cycles in the basic

candidate cycle sets is less significant for 2, 3, 4-SRLG sets than for 1-SRLG sets.

www.manaraa.com

81

Table 8.3 Running time (second) comparison between all cycles and basic
cycles
Network 1 Network 2

r #cycles Uniform 150 random #cycles Uniform 300 random

BASIC ALL BASIC ALL BASIC BASIC ALL BASIC ALL BASIC

1 27 3.2 0.2 3.5 0.3 30 21.1 0.4 23.6 0.4

2 39 15.7 0.8 110 0.8 41 237 1.0 270 1.0

3 33 6.7 0.3 7.8 0.4 42 1184 0.9 922 0.9

3 38 50.0 0.5 40.0 0.5 49 2420 1.2 940 1.3

On the other hand, Table 8.3 shows that ILP1 with basic candidate cycle set runs signif-

icantly faster than ILP1 with all cycles because the basic candidate cycle set contains much

fewer cycles and as a result the corresponding ILP formulation has much fewer variables and

constraints. It can be seen from Table 8.3 that the speedup ranges from 13 to 132 for Network

1, and from 60 to 1945 for Network 2. Of course, the performance gain in running time is

achieved at the cost of sacrificing spare capacity efficiency, as shown in Table 8.2.

8.5.3 p-Cycle Design with SRLG-Independent Restorability

To evaluate the impact of SRLG-independent restorability on the optimal p-cycle design,

we also run ILP2 with all cycles as the candidate cycles. The comparison between the total

spare capacity required with and without SRLG-independent restorability (computed by ILP2

and ILP1 respectively) is shown in Table 8.4. Since for 1-SRLG set (single link failure model),

the results are the same no matter SRLG-independent restorability is considered or not, we

omit the results for 1-SRLG set in the table.

As expected, the introduction of SRLG-independent restorability results in more spare

capacity requirement because x′
ij is a more restrictive restorability parameter than xijk is.

However, the extra spare capacity required by ILP2 over ILP1 is relatively small – between

5.7% and 10.7% for Network 1, and between 12.3% and 16.4% for Network 2.

Notice that for 4-SRLG set, ILP2 fails to find a solution for both networks, which means

that there is at least one non-SRLG-independently restorable link in both networks. To find

out how often such an undesirable situation happens and how many non-SRLG-restorable links

www.manaraa.com

82

Table 8.4 Optimal p-cycle design with and without SRLG-independent
restorability

Spare Network 1 Network 2

Capacity Uniform 150 random Uniform 300 random

ILP1 ILP2 ILP1 ILP2 ILP1 ILP2 ILP1 ILP2

2-SRLG set 122 135 302 331 260 292 763 872

3-SRLG set 133 142 315 333 354 412 1035 1200

4-SRLG set 165 N/A 392 N/A 388 N/A 1174 N/A

Table 8.5 Non-SRLG-independently restorable cases
Network 1 Network 2

bad cases Avg. # bad links # bad cases Avg. # bad links

(out of 100) among bad cases (out of 100) among bad cases

r = 2 11 1.18 1 1.00

r = 3 31 1.19 29 1.14

r = 4 46 1.61 63 1.87

exist in each case, we generate 100 r-SRLG (2 ≤ r ≤ 4) set for each network. Corresponding

results are shown in Table 8.5 in which “bad” means non-SRLG-independently restorable.

As shown in Table 8.5, as r increases, the probability that we run into a non-SRLG-

independently restorable situation gets higher for both networks. Meanwhile, in those non-

SRLG-independently restorable cases, the number of non-SRLG-independently restorable links

is low. Actually, most non-SRLG-independently restorable cases are caused by only one or two

non-SRLG-independently restorable links. This means that when an SRLG failure occurs, it

is very likely that most broken links can be restored immediately. Those affected non-SRLG-

independently restorable links can be restored after their end nodes find out which SRLG has

failed using a signaling protocol.

8.6 Conclusion

In this chapter, we extend the p-cycle survivable network design from the single link failure

model to the single SRLG failure model. An ILP formulation is provided to compute a p-cycle

www.manaraa.com

83

design with minimum spare capacity requirement for an input network, its SRLG set, and

its working capacities on the network links such that 100% restorability can be guaranteed in

case of any single SRLG failure. To avoid the enumeration of all cycles in the input network,

we propose a polynomial time algorithm called FIND BASIC CYCLES to generate a basic

candidate p-cycle set of size O(tm) (m is the number of links in the network and t = maxj∈L tj

where tj is the number of SRLGs to which link j belongs). Given enough spare capacity, such

a candidate p-cycle set can be used by the ILP to compute a p-cycle design that guarantees

100% restorability. Using the basic candidate p-cycle set can significantly reduce the time to

compute an ILP solution while compromising the spare capacity optimality of the ILP solution

due to the reduced number of candidate cycles. This trade-off is confirmed by our simulation

results.

The SRLG failure detection issue undermines fast restoration, which is a key merit of p-

cycle survivable network design with the single link failure model. We propose the concept of

SRLG-independent restorability to solve this problem. The idea is to redefine the restorability

parameter such that a broken link can be restored immediately by a p-cycle before its end

nodes find out which SRLG has failed. We provide a revised ILP to compute an optimal p-

cycle design with SRLG-independent restorability. Simulation results show that the additional

spare capacity required by SRLG-independent restorability is reasonable. Moreover, we prove

that it is NP-hard to compute a candidate p-cycle set to ensure 100% SRLG-independent

restorability in case of any single SRLG failure.

Appendix

SRLG-independent restorability problem (SRLG-I-R) is defined as follows. For a network

G = (V, L), an SRLG set R ⊆ P(L), and a link j ∈ L, is there a cycle i in G such that j can

be SRLG-independently restored by i, i.e., both end nodes of j are on cycle i and ∀k ∈ Rj ,

E(p1)∩k = ∅∨E(p2)∩k = ∅ where Rj = {g ∈ R : j ∈ g} and p1 and p2 are two paths between

the end nodes of j on cycle i?

www.manaraa.com

84

Theorem 8.1 SRLG-I-R is NP-hard.

Proof: We will prove that 3-SAT ≤p SRLG-I-R.

Given a conjunction normal form formula with n boolean variables x1, x2, · · · , xn and m

clauses C1, C2, · · · , Cm, each of which is a disjunction of three literals where each literal takes

the form of xq or xq (1 ≤ q ≤ n) and the three literals have different subscriptions, we construct

an instance of the SRLG-I-R problem as follows.

1) Construct a network.

• For each variable xq (1 ≤ q ≤ n), build a node q. In addition, a node 0 is added. Add

two parallel links labeled xq and xq between nodes q − 1 and q (1 ≤ q ≤ n).

• For each clause Ch (1 ≤ h ≤ m), build a node h′. In addition, a node 0′ is added. For

each clause Ch = l1 ∨ l2 ∨ l3 (1 ≤ h ≤ m), add three parallel links labeled Chl1, Chl2, and

Chl3 between nodes (h − 1)′ and h′.

• Add two extra nodes s and t. Add links s − t, s − 0, s − 0′, n − t, and m′ − t.

2) Define an SRLG set.

For each literal l, we define an SRLG that contains l and Chl if l appears in clause Ch

(1 ≤ h ≤ m). In addition, each SRLG contains link s − t.

3) Let j be s − t, i.e., we need to determine whether link s − t is SRLG-independently

restorable by a cycle in the network.

Figure 8.5 shows an example that illustrates the construction. Note that parallel links in

the network are treated as different links when they are used to form a cycle. It can be seen

that there are three groups of cycles in the constructed network.

(a) Cycles with the form s − 0 − 1 − 2 − · · · − n − t − m′ − (m − 1)′ − · · · − 0′ − s.

(b) “Top” cycles with the form s − 0 − 1 − 2 − · · · − n − t − s.

(c) “Bottom” cycles with the form s − t − m′ − (m − 1)′ − · · · − 0′ − s.

It is easy to verify that no cycle in group (b) or group (c) can provide SRLG-independent

restorability for link s − t because of the way we define the SRLG set. Therefore, only cycles

in group (a) can possibly offer SRLG-independent restorability for link s − t. And whether

www.manaraa.com

85

s t

0 3

0' 2'

1 2

1'

x
1

x
1

j

x2

x2

x3

x3

C1x1

C
1
x

2

C
1
x

3

C2x1

C
2
x

2

C
2
x

3

SRLGs on the network:

g
1
 = {x

1
, C

1
x

1
, C

2
x

1
, j}, g

2
 = {x

1
, j},

g
3
 = {x

2
, C

1
x

2
, j}, g

4
 = {x

2
, C

2
x

2
, j},

g
5
 = {x

3
, C

2
x

3
, j}, g

6
 = {x

3
, C

1
x

3
, j}

Figure 8.5 The network as well as the SRLG set derived from the formula
(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). Thick solid lines denote an
SRLG-independently restorable cycle for link j corresponding
to the assignment x1 = 0, x2 = 1, x3 = 1.

a cycle in group (a) can provide SRLG-independent restorability for link s − t depends on

whether the cycle’s top and bottom paths contain any links that belong to the same SRLG.

We now show that link j = s− t is SRLG-independently restorable if and only if the given

3-CNF formula is satisfiable.

Suppose j is SRLG-independently restorable, then there exists a cycle i in group (a) that

can always provide either its top or bottom path between s and t as the restoration path for

j no matter which SRLG fails. We obtain an assignment to the given 3-CNF formula based

on cycle i as follows. If i’s top path traverses link xq, then xq is assigned value 1. If i’s top

path traverses xq, then xq is assigned value 0. Such an assignment must satisfy each clause

Ch = l1 ∨ l2 ∨ l3 (1 ≤ h ≤ m). The reason is the following. Without loss of generality, assume

the bottom path of i traverses Chl1 between nodes (h − 1)′ and h′, then i’s top path cannot

traverse l1 because if so, the SRLG-independent restorability would be violated since there is

an SRLG that contains both l1 and Chl1 and the failure of this SRLG will break both the top

and the bottom paths. Therefore, i’s top path must traverse l1. According to the assignment

rule, the literal l1 is assigned value 1, which makes the clause Ch 1. Thus, the given 3-CNF

formula is satisfiable.

www.manaraa.com

86

Suppose the given 3-CNF formula is satisfiable, then it has a satisfying assignment. Based

on the assignment, we construct a cycle using the following rules. If xq is 1/0 in the assignment,

then let the top path of the cycle traverse link xq/xq and include all links with labels Chxq/Chxq

into the bottom path. Note that this may result in multiple links for a bottom path segment.

If this happens, just arbitrarily pick one link out of them for the segment. Since the assignment

satisfies the 3-CNF formula, a valid bottom path (i.e. each segment contains one link) can

be built from s to t. Furthermore, the bottom path together with the top path form a cycle

that offers SRLG-independent restorability for link j because any single SRLG failure will not

break both the top path and the bottom path simultaneously.

www.manaraa.com

87

CHAPTER 9. PATH-SEGMENT P-CYCLE DESIGN FOR DYNAMIC

TRAFFIC

Early works on p-cycle mainly focus on the p-cycle network design problem under the static

traffic model where a set of demands to be supported by the network is known in advance.

Recently, the problem of using p-cycles to protect dynamic traffic has been studied in [50][51].

In [52], the concept of protected working capacity envelope (PWCE) [53] is applied to p-cycle

networks to support dynamic traffic.

On the other hand, the original concept of a p-cycle protecting a span that is either on the

p-cycle or straddling the p-cycle is also expanded. In [54], span protecting p-cycle (hereafter

referred to as span p-cycle) is extended to path-segment protecting p-cycle (hereafter referred

to as flow p-cycle) that can protect a segment (consisting one or more continuous spans) of

the working path. An ILP model is given in [54] to solve the problem of using flow p-cycles

to protect a given set of demands with minimum spare capacity requirement. It was shown in

[54] that network designs using flow p-cycles can yield significant reduction in spare capacity

requirement compared with network designs using span p-cycles.

In this chapter, a dynamic service provisioning algorithm that uses flow p-cycles to provide

service protection is developed. When a demand arrives at the network, we need to compute

a working path for the demand and configure flow p-cycles to protect the demand’s working

capacities on the working path. The goal is to minimize the total working and spare capacities

required to set up the demand. When a demand leaves the network, we need to reclaim the

working capacities and possibly some spare capacities used by the demand.

This chapter is organized as follows. In section 9.1, we review the concept of flow p-cycle

defined in [54] and give a function to compute a cycle’s protection capability for a working path

www.manaraa.com

88

a

fe

dcb

hg

Figure 9.1 A flow p-cycle example

upon a span failure. In section 9.2, we present an ILP formulation to compute the optimal

setup for a dynamic demand. We also present a procedure to compute the reclaimable resources

when a demand departs the network. Simulation results are discussed in section 9.3. Finally,

a conclusion is given in section 9.4.

9.1 Flow p-Cycle Concept

The concept of flow p-cycle (or path-segment protecting p-cycle) is introduced in [54]. The

difference between a flow p-cycle and a conventional span p-cycle is illustrated in Figure 9.1.

The figure shows a working path p =< a− b− c− g − h > and a p-cycle c =< b− g − f − b >.

If c is regarded as a span p-cycle, then it cannot provide protection for span b− c or span c− g

on p since neither of the two spans is an on-cycle or straddling span of c. On the other hand,

segment < b− c− g > of p can be considered to straddle cycle c. Thus, c can be considered as

a flow p-cycle that provides two protection paths (< b − g > and < b − f − g >) for segment

< b− c− g > of p in case span b− c or span c− g fails. Essentially, the concept of flow p-cycle

extends the protectability of p-cycle from a span to a path segment.

Given a cycle i, a span j, and a working path p, we can compute the number of protection

paths cycle i can provide for path p in case span j fails using the following CYCLE SPAN PATH

function.

int CYCLE SPAN PATH(cycle i, span j, path p)

1. if j 6∈ p then

www.manaraa.com

89

2. return 0;

Suppose the source and destination of p are s and t,

and the end nodes of j are u and v.

Without loss of generality, assume u is closer to s

and v is closer to t.

The segment < s − · · · − u > is denoted as S1.

The segment < v − · · · − t > is denoted as S2.

3. let N1 = V (S1) ∩ V (i), N2 = V (S2) ∩ V (i);

4. if N1 = ∅ or N2 = ∅ then

5. return 0;

6. Pick u′ ∈ N1 such that u′ is the closest to u along S1;

7. Pick v′ ∈ N2 such that v′ is the closest to v along S2;

8. if u′ = u and v′ = v then

9. if u − v is an on-cycle span of cycle i then

10. return 1;

11.return 2;

Line 1-2 consider the case that j is not contained in p. In this case, 0 is returned since

the failure of j will not affect p and therefore no protection path is needed for p. In line 3,

V (S1) and V (S2) denote the set of nodes on S1 and S2 respectively, and V (i) denotes the set

of nodes on i. Line 4-5 deal with the case that j is not in a segment of p that intersects i at

both ends. In this case, 0 is returned since cycle i cannot provide a protection path for p in

case j fails. Line 6-11 cover the case that j is in a segment of p that intersects i at both ends.

Two subcases are considered here. In the first subcase, j is a span on cycle i, so i can provide

one protection path for j in case j fails. In the second subcase, j is contained in a segment of

p that straddles i (the segment may contain 0 or more spans other than j), so i can provide

two protection paths for the segment in case j fails.

www.manaraa.com

90

u

s t

v

(a)

r
1
 = (s, t, 3)

u

s t

v

(b)

r
1
 = (s, t, 3)

r 2
 =

 (s
, t

, 3
)

Figure 9.2 A demand is denoted as a 3-tuple (source, destination, capacity
request). The thick solid line represents the working path for
a demand and the dashed line represents a p-cycle. (a) Total
capacity required to set up r1 is 10. (b) Total capacity required
to set up r2 is 6 if we reuse the existing p-cycles.

9.2 Dynamic Service Provisioning Using Flow p-Cycles

9.2.1 Demand Setup

We consider dynamic provisioning of demands with protection against single span failures

using flow p-cycles. When a demand with capacity requirement of d arrives, we need to take

the following steps to set up the demand: a) Choose a working path. b) Set up d working

lightpaths on the chosen working path. c) Configure flow p-cycles to protect the demand’s

working capacities on the working path. Our goal is to minimize the total cost of working

and spare capacities required to set up the demand. If the network cannot accommodate the

demand due to insufficient available capacity, the demand will be rejected.

The key to reduce the total capacity requirement of the current demand is to reuse the

existing p-cycles (i.e., p-cycles created to protect the existing demands) to protect the current

demand. Consider the example shown in Figure 9.2. In (a), a demand r1 comes with source s,

destination t, and 3 units of capacity request. The optimal way to set it up is to use working

path < s − t >, and create a p-cycle < s − u − t − v − s > and a p-cycle < s − t − v − s >

to protect the working capacities of the demand. The first p-cycle can provide two restoration

paths in case span s − t fails and the second p-cycle can provide one restoration path in case

www.manaraa.com

91

span s− t fails. Thus, the two p-cycles together can protect 3 units of working capacity on the

working path. Suppose after r1 is set up, another demand r2 also asking for 3 units of capacity

between s and t arrives. If we use < s − t > as its working path (not shown in the figure),

the most efficient way to protect r2 is to add a p-cycle < s − u − t − v − s > and a p-cycle

< s − t − v − s > (or < s − t − u − s >). By this way, the total capacity required to set up

r2 is 10, which is the sum of 3 units of working capacity, 4 units of spare capacity taken by

p-cycle < s− u− t− v − s >, and 3 units of spare capacity taken by p-cycle < s− t− v − s >

(or < s − t − u − s >). Figure 9.2 (b) offers a better solution, which uses < s − u − t >

as the working path. In this solution, no new p-cycle needs to be deployed since the existing

p-cycle < s − u − t − v − s > can provide one restoration path (< s − v − t >) for r2 and

the other existing p-cycle < s − t − v − s > can provide two restoration paths (< s − t > and

< s − v − t >) for r2 in case span s − u or u − t fails. r2 can reuse the p-cycles deployed to

protect r1 because r1’s working path and r2’s working path will not fail simultaneously under

the single span failure assumption. In this solution, the total capacity required to set up r2 is

6, which equals the total working capacity on the working path < s − u − t >.

In the following, we provide an ILP formulation to solve the following dynamic demand

provisioning problem. Given a demand that requires d units of capacity, compute a working

path and a set of p-cycles to protect the demand’s working capacity on the working path so

that the total working and spare capacity required by the demand is minimized. The ILP

computes the optimal solution by reusing the existing p-cycles to protect the current demand.

Sets: (input or pre-computed)

S: The set of all spans in the network.

P : The set of candidate cycles.

Q: The set of candidate working paths for the current demand.

Dj : The set of existing (i.e., already admitted) demands whose working paths traverse span j.

Parameters: (input or pre-computed)

www.manaraa.com

92

d: The capacity units required by the current demand.

cj : The cost of one unit of capacity on span j.

tj : The residual capacity on span j.

pij : 1 if span j is on cycle i, 0 otherwise.

bjk: 1 if span j is on the kth candidate working path for the current demand, 0 otherwise.

xijk: The number of restoration paths that can be provided by cycle i in case span j fails if

the kth candidate working path is chosen for the current demand. This value can be 0, 1, or

2, which is pre-computed by the function CYCLE SPAN PATH(i, j, pk) where pk denotes the

kth candidate working path.

Ni: The number of unit-capacity copies of cycle i that have been deployed before the current

demand arrives.

nr
ij : The number of unit-capacity copies of cycle i configured for the restoration of an existing

demand r in case span j fails.

Integer variables: (to be solved)

wj ≥ 0: The working capacity on span j required by the current demand.

sj ≥ 0: The spare capacity on span j required by p-cycles to be deployed for the current

demand.

γk ∈ {0, 1}: Takes value 1 if the kth candidate working path is chosen for the current demand,

0 otherwise.

ni ≥ 0: The number of unit-capacity copies of cycle i need to be deployed for the current

demand.

nij ≥ 0: The number of unit-capacity copies of cycle i needed for the restoration of the current

demand in case span j fails.

Minimize
∑

j∈S

cj · (wj + sj)

www.manaraa.com

93

Subject to:
∑

k∈Q

γk = 1 (9.1)

wj =
∑

k∈Q

γk · bjk · d ∀j ∈ S (9.2)

sj =
∑

i∈P

pij · ni ∀j ∈ S (9.3)

∑

i∈P

xijk · nij ≥ γk · bjk · d ∀k ∈ Q, ∀j ∈ S (9.4)

Ni + ni ≥ nij +
∑

r∈Dj

nr
ij ∀i ∈ P, ∀j ∈ S (9.5)

wj + sj ≤ tj ∀j ∈ S (9.6)

The objective is to minimize the cost of working and spare capacity required by the current

demand. Constraint (9.1) ensures that exactly one candidate working path is chosen for the

current demand. Constraints in (9.2) compute the working capacity required by the current

demand on each span. Constraints in (9.3) compute the spare capacity required by the current

demand on each span. Specifically, the spare capacity required on span j equals the number of

p-cycles to be deployed for the current demand that traverse j. Constraints in (9.4) guarantee

that if span j fails and j is on the working path of the current demand, there are enough

p-cycles to restore the current demand’s working capacity on j. Constraints in (9.5) guarantee

that the newly deployed copies of cycle i for the current demand together with the already

deployed copies of cycle i for the existing demands should be enough to satisfy the requirement

for copies of cycle i to restore the current demand as well as all the existing demands upon

any single span failure. Finally, constraints in (9.6) ensure that the residual capacity on each

span is sufficient to support the working and spare capacities required by the current demand.

When a demand arrives at the network, the ILP is solved for the demand. If a solution

cannot be found for the ILP, then the demand is rejected. If a solution is found, then the

demand can be satisfied by setting up d lightpaths on the working path and configuring the

p-cycles for demand protection. When a demand is satisfied, the corresponding sets and

parameters need to be updated accordingly. Specifically, assume r is the satisfied demand,

the following need to be done. Dj = Dj ∪ {r} for all span j on the working path of r.

www.manaraa.com

94

tj = tj − (wj + sj) for all span j that needs to allocate working or spare capacity. Ni = Ni +ni

for all newly deployed cycle i. Finally, nr
ij should be set to the value of nij .

9.2.2 Demand Teardown

When an admitted demand r departs the network, we need to collect the resources taken

by it. Since the working capacities are dedicated to a demand, the working capacities along

r’s working path can be reclaimed. In terms of the spare capacities taken by the p-cycles that

protects r, the situation is more complicated because the p-cycles used for protecting r might

be shared by other demands. Using Figure 9.2 (b) as an example, suppose after r2 is set up, r1

is leaving the network. We can collect the working capacities along r1’s working path < s−t >.

However, the p-cycles < s− u− t− v − s > and < s− v − t− s > must be kept to protect the

remaining demand r2. Therefore, when tearing down a demand, only those p-cycles not used

by any other demand can be torn down and their occupied spare capacities can be returned

to the network. The pseudo-code describing the teardown procedure is given below. In the

pseudo-code, D denotes the current set of demands in the network (including r, the demand

to be torn down) and Ni denotes the number of copies of cycle i that are currently deployed

in the network.

TEAR DOWN(demand r)

1. let D = D − {r};

2. Release the working capacities along r’s working path.

3. let C = {cycles used for protecting demand r};

4. for each cycle i ∈ C do

5. let N ′
i = maxj∈S

∑

d∈Dj
nd

ij ;

6. if Ni − N ′
i > 0 then

7. Release the spare capacities taken by

(Ni − N ′
i) copies of cycle i.

www.manaraa.com

95

In line 5, N ′
i is the number of copies of cycle i needed to protect all demands against any

single span failure after r departs the network. So the number of copies of cycle i that can be

torn down is (Ni −N ′
i). Note that in line 5, it is not necessary to compute

∑

d∈Dj
nd

ij for each

j for the following reason. If span j is on the working path of r, then Dj = Dj − {r} after

demand r’s departure; otherwise Dj is unchanged. The computation of N ′
i can be accelerated

with an auxiliary data structure Nij =
∑

d∈Dj
nd

ij for each cycle i and each span j because Nij

has to be re-computed only if j is on the working path of r.

9.3 Numerical Results

9.3.1 Simulation Settings

The 14-node, 21-span NSFNET shown in Figure 9.3 is used for simulations. Each span in

the network is set to have 64 wavelengths. The arrival of demands follows Poisson distribution

with arrival rate λ = 2 demands per unit time and the demand holding time is exponentially

distributed with mean 1/µ ∈ {4, 5, 6, 7, 8}. Therefore, the traffic load in Erlang is λ/µ ∈

{8, 10, 12, 14, 16}. For each traffic load, ten groups of 1000 demands are loaded to the network.

Demands are uniformly distributed among all node pairs and the capacity units requested by

a demand is chosen from {1, 2, 3, 4} with equal probability. Each group of demands are set

up and torn down according to their arrival and departure sequence and the total revenue

of all demands is measured. Then the average total revenue of the ten groups is calculated

for each traffic load. The revenue of a demand is defined as the product of its capacity units

requested, the hop count of its shortest path in the network, and its holding time if the demand

is satisfied, otherwise the revenue is 0. (The total revenue metric is similar to the total earning

metric proposed in [55].)

Two candidate cycle sets are used for the ILP. The first set contains all cycles in the network.

The second set contains cycles obtained by the algorithm presented in [56] which computes

O(m) (m is the number of spans in a network) cycles that provide protection for all spans in

the network. For NSFNET, the first set contains 139 cycles and the second set contains 34

cycles. Candidate working paths for each node pair are pre-computed using k-shortest paths

www.manaraa.com

96

111

2

3

4
5

6

7

8

10 14

12

13

9

Figure 9.3 NSFNET

algorithm provided in [57]. In our simulations, the value of k is adjusted from 1 to 6.

All simulations are run on a Sun Ultra 10 workstation equipped with a single 440 MHz

CPU, 256 MB RAM, and 4 GB virtual memory. CPLEX8.1 is used as the solver for ILP.

9.3.2 Flow p-Cycle vs. Span p-cycle

Since span p-cycle is a special case of flow p-cycle, the ILP for setting up a demand given

in section 9.2 can be easily adapted to work for span p-cycle by changing the computation of

xijk to x′
ijk = xij · bjk where xij is the span-cycle relationship parameter, i.e., xij = 2 if j is a

straddling span of cycle i, xij = 1 if j is on cycle i, xij = 0 otherwise. As for demand teardown

procedure, nothing needs to be changed. The performance comparison between flow p-cycle

and span p-cycle is shown in Figure 9.4. The figure shows the average total revenue at various

loads when k (number of candidate working paths) is set to 3.

It can be seen that flow p-cycle always yields higher revenue than span p-cycle. The

improvement ranges from 3% to 25% for all cycles case, and from 3% to 13% for limited cycles

case. In addition, as the load gets higher, the advantage of flow p-cycle over span p-cycle gets

larger.

9.3.3 On the Number of Candidate Working Paths k

Figure 9.5 shows the relationship between average total revenue and k value when load =

12. For flow p-cycle case, we expect that providing more candidate working paths for each

www.manaraa.com

97

30000

35000

40000

45000

50000

8 10 12 14 16

A
ve

ra
ge

 T
ot

al
 R

ev
en

ue

Traffic Load (Erlang)

Span p-cycle, limited cycles
Flow p-cycle, limited cycles

Span p-cycle, all cycles
Flow p-cycle, all cycles

Figure 9.4 Relationship between average total revenue and traffic load
when k = 3.

34000

36000

38000

40000

42000

44000

46000

1 2 3 4 5 6

A
ve

ra
ge

 T
ot

al
 R

ev
en

ue

k

Span p-cycle, limited cycles
Flow p-cycles, limited cycles

Span p-cycles, all cycles
Flow p-cycle, all cycles

Figure 9.5 Relationship between average total revenue and k value when
load = 12.

www.manaraa.com

98

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

A
ve

ra
ge

 S
et

up
 T

im
e

(s
ec

on
d)

k

Flow p-cycle, limited cycles
Flow p-cycles, all cycles

Figure 9.6 Relationship between average demand setup time and k value
when load = 12.

demand would help increase the total revenue since the network would have a better chance to

accommodate a new demand more efficiently. Consider the flow p-cycle reuse example shown

in Figure 9.2. If only one candidate working path is provided for each demand, p-cycle reuse

cannot be achieved. On the other hand, we can benefit from p-cycle reuse by providing more

candidate working paths as shown in Figure 9.2. In Figure 9.5, the top two curves for flow p-

cycle show the trend that total revenue increases as k increases. However, for span p-cycle, this

trend is not exhibited. To explain this result, notice that when flow p-cycle is used, candidate

working paths other than the shortest path provide opportunities to take advantage of the

straddling relationship between working path segments and flow p-cycles. However, such a

benefit does not exist for span p-cycles that only provide protection to spans. Therefore, span

p-cycles may not benefit from multiple choices of working paths as flow p-cycles do.

9.3.4 All Cycles vs. Limited Cycles

It can be observed from Figure 9.4 and Figure 9.5 that using all cycles always results in

better performance than using limited cycles for both flow p-cycle and span p-cycle cases. On

the other hand, as shown in Figure 9.6, the price of using all cycles is longer time to compute

the setup for a demand because more candidate cycles result in more integer variables (ni, nij)

www.manaraa.com

99

and more constraints (9.5) in the ILP. Similar tradeoff also applies to the number of candidate

paths (k value) because as k gets larger, more integer variables (γk) and more constraints (9.4)

are introduced.

9.4 Conclusion

We propose a dynamic service provisioning algorithm using flow p-cycle to protect demand

against single span failures. When a demand arrives at the network, we use an ILP formu-

lation to compute a working path and a set of flow p-cycles to protect the demand with the

goal of minimizing the total working capacity and spare capacity consumption. When an ex-

isting demand leaves the network, its working capacities and releasable spare capacities are

reclaimed. Simulations are run on various settings to evaluate the performance of the proposed

scheme. The results show that flow p-cycle outperforms span p-cycle to a considerable extent

for dynamic traffic. Furthermore, trade-off between total revenue and demand setup time can

be achieved by tunable parameters such as the number of candidate cycles and the number of

candidate working paths.

www.manaraa.com

100

CHAPTER 10. CONCLUSION AND FUTURE WORK

10.1 Conclusion

WDM optical networks are becoming the backbone transport network for the next genera-

tion Internet. Survivability issues in WDM optical networks are important since failures would

result in huge data loss. This dissertation studies this field from two perspectives, one is the

survivable mapping from IP layer to WDM layer, the other is p-cycle protection schemes on

WDM networks.

For the survivable mapping problem, this dissertation offers an efficient heuristic approx-

imation algorithm, MAP-and-FIX, to break down its hardness. Moreover, it also discovers a

new strategy, logical topology augmentation. The idea of selectively adding some logical links

so that a survivable mapping can be easily computed is unique among existing survivable map-

ping problem solutions. Following this approach, this dissertation originates a new survivable

mapping problem that minimizes the survivable mapping cost with the flexibility of adding

new links into the given logical topology. The significance as well as certain interesting graph

theoretical properties of this new problem is deliberated. Overall, this dissertation exhibits a

new perspective for the survivable mapping problem.

On the other hand, this dissertation also delves in WDM layer p-cycle protection design

problems. The first challenge settled by this dissertation is how to avoid using all cycles in the

network without sacrificing too much efficiency in the result p-cycle design. Then we apply

p-cycle design onto a more realistic failure model, single SRLG failure model that eliminates

the single link failure assumption. In addition, using path-segment p-cycle (also known as flow

p-cycle) to offer survivability for dynamic traffic demands is also presented in this dissertation.

Our proposed schemes make it more practical to apply p-cycle protection in WDM networks.

www.manaraa.com

101

10.2 Future Work

For the survivable mapping problem, some intriguing problems are also observed besides

the results shown in this dissertation. And we believe that the answers to them would also

have profound implication on related graph theory algorithms. Specifically, two open problems

are proposed:

1. Given a logical topology and a physical topology, if there is a survivable mapping, is

there always a reflectively-routed survivable mapping?

Should we have a positive answer to this question, it would be helpful to simplify the

computation of a survivable mapping because the routes of reflective links would be determined

right away. Although our simulations suggest a positive answer to the question, this is still an

open problem waiting for a proof.

2. What would happen if the intersection of the logical topology and physical topology is

a tree?

In Chapter 4, we proved a theorem saying that as long as the intersection of the logical and

physical topology is 2-edge-connected, any reflectively-routed mapping would be survivable.

Since the condition of 2-edge-connectivity is quite restrictive, we would like to know what will

happen if we relax the condition to a spanning tree. At this point, we do not know whether

the survivable mapping problem is NP-hard or not if the intersection is a tree. No matter

what the answer is, it is significant. If survivable mapping problem is NP-hard even under this

constraint, it would mean that 2-edge-connectivity might be the bottom line for the logical

topology augmentation approach. Otherwise, if survivable mapping problem is polynomial

time solvable under this constraint, it would mean that the relaxation works and we get an

improved solution over the one proposed in Chapter 4.

For the p-cycle protection in WDM networks, we believe that more research efforts should be

devoted into applying p-cycle on survivable dynamic traffic provisioning because as the price of

bandwidth supported by WDM networks goes down, WDM networks service providers should

see more and more dynamic traffic requests coming in. Cost-effective resources management

will be of great interests for both service providers and customers.

www.manaraa.com

102

BIBLIOGRAPHY

[1] A. Sen, B. Hao, and B.H. Shen, “Survivable routing in WDM networks”, Seventh Inter-

national Symposium on Computers and Communications, pp. 726-731, July 2002.

[2] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed preconfiguration: ring-like

speed with mesh-like capacity for self-planning network restoration”, Proc. of IEEE ICC

’98, pp. 537-543, Jun. 1998.

[3] J.Y. Wei, “Advances in the management and control of optical Internet”, IEEE Journal

on Selected Areas in Communications, Vol. 20, No. 4, pp. 768-785, May 2002.

[4] L. Ruan and H. Luo, “Dynamic routing of restorable lightpaths: a tradeoff between

capacity efficiency and resource information requirement”, Proceedings of the 7th IFIP

Working Conference on Optical Network Design and Modeling, pp. 537-548, Budapest,

Hungary, February 2003.

[5] H. Luo and L. Ruan, “Load balancing heuristics for dynamic establishment of restorable

lightpaths”, Proceedings of the Eleventh International Conference on Computer Commu-

nications and Networks, pp. 472-477, Miami, Florida, October 2002.

[6] G. Mohan, C. S. R. Murthy, and A. K. Somani, “Efficient algorithms for routing depend-

able connections in WDM optical networks”, IEEE/ACM Transactions on Networking,

Vol. 9, No. 10, pp. 553-566, October 2001.

[7] B. T. Doshi, S. Dravida, P. Harshavardhana, O. Hauser and Y. Wang, “Optical network

design and restoration”, Bell Labs Technical Journal, Vol. 4, No. 1, pp. 58-84, Jan.-Mar.

1999.

www.manaraa.com

103

[8] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks, Part I-Protection”,

Proc. IEEE INFOCOM’99, pp. 744-751, 1999.

[9] S. Sengupta and R. Ramamurthy, “Capacity efficient distributed routing of mesh-restored

lightpaths in optical networks”, Proc. IEEE GLOBECOM ’01, pp. 2129-2133, 2001.

[10] J. Wang, L. Sahasrabuddhe, and B. Mukherjee, “Path vs. subpath vs. link restoration for

fault management in IP-over-WDM networks: performance comparisons using GMPLS

control signaling”, IEEE Communications Magazine, Vol. 40, No. 11, pp. 80-87, Nov.

2002.

[11] S. Ramamurthy and B. Mukherjee, “Survivable WDM Mesh Networks, Part II-

Restoration”, Proc. IEEE ICC’99, pp. 2023-2030, 1999.

[12] R. Iraschko and W. Grover, “A highly efficient path-restoration protocol for management

of optical network transport integrity”, IEEE Journal on Selected Areas in Communica-

tions, Vol. 18, No. 5, pp. 779-794, May 2000.

[13] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture”,

RFC 3031, Jan. 2001.

[14] A. Autenrieth and A. Kirstadter, “RD-QoS - the integrated provisioning of resilience and

QoS in MPLS-based networks”, IEEE International Conference on Communications 2002,

pages 1174-1178, 2002.

[15] M. Kodialam and T. V. Lakshman, “Dynamic routing of bandwidth guaranteed tunnels

with restoration”, Proc. of IEEE INFOCOM’00, pp. 902-911, 2000.

[16] D. Zhou and T.-H. Lai, “Efficient resource allocation in self-healing multiprotocol label

switching mesh networks”, In Proc. of IEEE GLOBECOM’01, pp. 2671-2675, 2001.

[17] D. Colle, P. Van Heuven, C. Develder, S. Van den Berghe, I. Lievens, M. Pickavet, and P.

Demeester, “MPLS recovery mechanisms for IP-over-WDM networks”, Photonic Network

Communications, Vol. 3, No. 1-2, pp. 23-40, January-June 2001.

www.manaraa.com

104

[18] J. L. Marzo, E. Calle, C. Scoglio, and T. Anjali, “Adding QoS protection in order to

enhance MPLS QoS routing”, ICC ’03, pp. 1973-1977, May 2003.

[19] D. Colle, S. De Maesschalck, C. Develder, P. Van Heuven, A. Groebbens, J. Cheyns, I.

Lievens, M. Pickavet, P. Lagasse, and P. Demeester, “ Data-centric optical networks and

their survivability”, IEEE Journal on Selected Areas in Communications, Vol. 20, No. 1,

pp. 6 -20, January 2002.

[20] E. Modiano and A. Narula-Tam, “Survivable routing of logical topologies in WDM net-

works”, INFOCOM 2001, pp. 348-357, April 2001.

[21] Q. Deng, G. Sasaki, and C.-F. Su, “Survivable IP over WDM: a mathematical program-

ming problem formulation,” Proc. of 40th Allerton Conference on Communication, Control

and Computing, Monticello, IL, Oct. 2002.

[22] O. Crochat and J.-Y. Le Boudec, “Design protection for WDM optical networks”, IEEE

Journal on Selected Areas in Communications, Vol. 16, No. 7, pp. 1158-1165, Sept. 1998.

[23] O. Crochat, J.-Y. Le Boudec, and O. Gerstel, “Protection interoperability for WDM

optical networks”, IEEE/ACM Transactions on Networking, Vol. 8, No. 3, pp. 384-395,

June 2000.

[24] G. Sasaki, C.-F. Su, and D. Blight, “Simple layout algorithms to maintain network con-

nectivity under faults”, 38th Annual Allerton Conference on Communication, Control,

and Computing, pp. 1266-1273, Sept. 2000.

[25] M. Kurant and P. Thiran, “Survivable mapping algorithm by ring trimming (SMART) for

large IP-over-WDM networks,” Poceedings of BroadNets 2004, pp. 44-53, San Jose, CA,

Oct. 2004.

[26] M. Kurant and P. Thiran, “On survivable routing of mesh topologies in IP-over-WDM

networks,” Proc. of IEEE INFOCOM’05, pp. 1106-1116, March 2005.

www.manaraa.com

105

[27] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault management in IP-over-

WDM networks: WDM protection versus IP restoration”, IEEE Journal on Selected Areas

in Communications, Vol. 20, No. 1, pp. 21-33, Jan. 2002.

[28] N. C. Wormald, “Generating random regular graphs”, Journal of Algorithms, Vol. 5, pp.

247-280, 1984.

[29] G. Even, J. Feldman, G. Kortsarz, and Z. Nutov, “A 3/2-approximation for augment-

ing edge-connectivity of a graph from 1 to 2 using a subset of a given edge set”, Proc.

RANDOM-APPROX ’01, pp. 90-101, 2001.

[30] C. Liu and L. Ruan, “Logical topology augmentation for survivable mapping in IP-over-

WDM networks,” Proc. of IEEE Globecom’05, pp. 1885-1889, St. Louis, MO, Nov/Dec.

2005.

[31] P. Kelsen and V. Ramachandran, “On finding minimal two-connected subgraphs, ” Jour-

nal of Algorithms, Vol. 18, No. 1, pp. 1-49, January 1995.

[32] R. Iraschko, M. MacGregor, and W. Grover, “Optimal capacity placement for path restora-

tion in STM or ATM mesh-survivable networks”, IEEE/ACM Transaction on Networking,

Vol. 6, No. 3, pp. 326-336, Jun. 1998.

[33] D. A. Schupke, C. G. Gruber, and A. Autenrieth, “Optimal configuration of p-cycles in

WDM networks”, Proc. of IEEE ICC ’02, pp. 2761-2765, Apr. 2002.

[34] J. Doucette, D. He, W. D. Grover, and O. Yang, “Algorithmic approaches for efficient

enumeration of candidate p-cycles and capacitated p-cycle network design”, Proc. of

the Fourth International Workshop on the Design of Reliable Communication Networks

(DRCN 2003), pp. 212-220, Oct. 2003.

[35] D. A. Schupke, “An ILP for optimal p-cycle selection without cycle enumeration”, Proc.

of the Eighth Working Conference on Optical Network Design and Modelling (ONDM),

Feb. 2004.

www.manaraa.com

106

[36] W. D. Grover and J. E. Doucette, “Advances in optical network design with p-cycles: joint

optimization and pre-selection of candidate p-cycles”, Proc. of the IEEE-LEOS Summer

Topical Meeting on All Optical Networking, pp. WA2-49-WA2-50, Jul. 2002.

[37] C. G. Gruber, “Resilient networks with non-simple p-cycles”, Proc. of International Con-

ference on Telecommunications (ICT 2003), Feb. 2003.

[38] C. Mauz, “p-Cycle protection in wavelength routed networks”, Proceedings of the Seventh

Working Conference on Optical Network Design and Modelling (ONDM’03), Feb. 2003.

[39] H. Zhang and O. Yang, “Finding protection cycles in DWDM networks”, Proc. of IEEE

ICC ’02, pp. 2756-2760, Apr./May 2002.

[40] D. B. Johnson, “Finding all the elementary circuits of a directed graph”, SIAM J. Comput.

Vol. 4, No. 1, pp. 77-84, 1975.

[41] W. D. Grover, Mesh-based Survivable Networks: Options and Strategies for Optical,

MPLS, SONET and ATM Networking, Prentice Hall PTR, Upper Saddle River, New

Jersey, 2003.

[42] D. Papadimitriou et al., “Inference of shared risk link groups”, Internet Draft, Work in

Progress, Nov. 2001.

[43] J. Q. Hu, “Diverse routing in optical mesh networks”, IEEE Transactions on Communi-

cations, vol. 51, no. 3, pp. 489-494, Mar. 2003.

[44] G. Ellinas et al., “Routing and restoration architectures in mesh optical networks”, Optical

Network Magazine, vol. 4, no. 1, pp. 91-106, Jan./Feb. 2003.

[45] A. Todimala and B. Ramamurthy, “An iterative heuristic for SRLG diverse routing in

WDM mesh networks”, Proc. of IEEE ICCCN ’04, pp. 199-204, Oct. 2004.

[46] D. Xu, Y. Xiong, C. Qiao, and G. Li, “Trap avoidance and protection schemes in networks

with shared risk link groups”, IEEE/OSA Journal of Lightwave Technology, vol. 21, no.

11, pp. 2683-2693, Nov. 2003.

www.manaraa.com

107

[47] D. A. Schupke, “The tradeoff between the number of deployed p-cycles and the surviv-

ability to dual fiber duct failures”, Proc. of IEEE ICC ’03, vol. 2, pp. 1428-1432, May

2003.

[48] D. A. Schupke, “Multiple failure survivability in WDM networks with p-cycles”, Proc. of

IEEE International Symposium on Circuits and Systems (ISCAS) ’03, vol. 3, pp. 866-869,

May 2003.

[49] D. A. Schupke, W. D. Grover, and M. Clouqueur, “Strategies for enhanced dual failure

restorability with static or reconfigurable p-Cycle networks”, Proc. of IEEE ICC ’04, vol.

3, pp. 1628-1633, Jun. 2004.

[50] L. Ruan and F. Tang, “Dynamic establishment of restorable connections using p-cycle

protection in WDM networks”, Proc. of Broadnets ’05, pp. 147-154, Oct. 2005.

[51] W. He, J. Fang, and A. K. Somani, “A p-cycle based survivable design for dynamic traffic

in WDM networks”, Proc. of IEEE Globecom ’05, pp. 1869-1873, Nov./Dec. 2005.

[52] G. Shen and W.D. Grover, “Design and performance of protected working capacity en-

velopes based on p-cycles for dynamic provisioning of survivable services”, OSA J. Optical

Networking, vol.4, no.7, pp. 361-390, Jul. 2005.

[53] W. D. Grover, “The protected working capacity envelope concept: an alternative paradigm

for automated service provisioning”, IEEE Communications Magazine, pp. 62-69, Jan.

2004.

[54] G. Shen and W. D. Grover, “Extending the p-cycle concept to path-segment protection”,

Proc. IEEE International Conference on Communications, pp. 1314-1319, May 2003.

[55] C. Qiao and D. Xu, “Distributed Partial Information Management (DPIM) Schemes for

Survivable Networks - Part I”, Proc. of IEEE INFOCOM’02, pp. 302 - 311, Jun. 2002.

[56] C. Liu and L. Ruan, “Finding good candidate cycles for efficient p-cycle network design”,

Proc. of IEEE ICCCN ’04, pp. 321-326, Oct. 2004.

www.manaraa.com

108

[57] N. Katoh, T. Ibaraki, and H. Mine, “An efficent algorithm for k shortest simple paths”,

Networks, vol. 12, pp. 411-427, 1982.

	2007
	Survivability issues in WDM optical networks
	Chang Liu
	Recommended Citation

	C:/Documents and Settings/Charlie/My Documents/dissertation/thesis.dvi

